Copyright (c) 2024 santhi physics santhi, Mrs.M. Seethalakshmi, Dr.S.Dhanapandian, Dr.K.Ashokkumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Simple Hydrothermally Prepared CuO Nanoparticles for Enhanced Supercapacitor Applications
Corresponding Author(s) : M. Shanthi
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
In this study, copper oxide nanoparticles (CuO NPs) were synthesized through a simple hydrothermal route with various surfactants (PEG, CTAB and HMTA) and studied for their phase structure, chemical bonding, surface morphology, oxidation states and electrochemical behaviour. The X-ray diffraction peaks were revealed the orthorhombic structure of the PEG assisted CuO nanoparticles with calculated crystallite size value of 13.23 nm. The SEM images exposed with different morphology such as spherical, rock-like, rod and plate of synthesized products, whereas the XPS analysis revealed the composition and elemental state of the prepared sample. In the FTIR, the presence of vibrational groups in the synthesized material are confirmed. The prepared electrode revealed pseudocapacitance nature and its Csp value of 297 F g–1 at 10 mV/s. The stability result indicates that the maximum retention value of 77.24% in the prepared electrode. Moreover, the EIS measurements revealed the exceptional rate capability and reversible characteristics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Lu, Z.A. Khan, M.S. Alvarez-Alvarado, Y. Zhang, Z. Huang and M. Imran, Sustainability, 12, 5078 (2020); https://doi.org/10.3390/su12125078
- M. Vijayakumar, A. Bharathi Sankar, D. Sri Rohita, T.N. Rao and M. Karthik, ACS Sustain. Chem.& Eng., 7, 17175 (2019); https://doi.org/10.1021/acssuschemeng.9b03568
- A.K. Yedluri and H.-J. Kim, RSC Adv., 9, 1115 (2019); https://doi.org/10.1039/C8RA09081E
- C. Yan, M. Jin, X. Pan, L. Ma and X. Ma, RSC Adv., 10, 9299 (2020); https://doi.org/10.1039/C9RA10701K
- M. Minakshi S. Higley, C. Baur, D.R.G. Mitchell, R.T. Jones and M. Fichtner, RSC Adv., 9, 26981 (2019); https://doi.org/10.1039/C9RA04289J
- L. Chen, D. Liu and P. Yang, RSC Adv., 9, 12793 (2019); https://doi.org/10.1039/C9RA01928F
- B.A. Mola, G. Mani, S. Sambasivam, M.R. Pallavolu, A.A. Ghfar, M. Ouladsmane, M. Alsawat, N.R. Reddy, Y. Noh, S.K. Jilcha, H.J. Kim, I.M. Obaidat and Y.A. Kumar, J. Energy Storage, 43, 103155 (2021); https://doi.org/10.1016/j.est.2021.103155
- P. Simon and Y. Gogotsi, Acc. Chem. Res., 46, 1094 (2013); https://doi.org/10.1021/ar200306b
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin and Z.X. Shen, Adv. Sci., 5, 1700322 (2018); https://doi.org/10.1002/advs.201700322
- F. Chen, C. Chen, Q. Hu, B. Xiang, T. Song, X. Zou, W. Li, B. Xiong and M. Deng, Chem. Eng. J., 401, 126145 (2020); https://doi.org/10.1016/j.cej.2020.126145
- K. Kierzek and G. Gryglewicz, Molecules, 25, 4255 (2020); https://doi.org/10.3390/molecules25184255
- R. He, G. Xu, Y. Wu, K. Shi, H. Tang, P. Ma, J. Zeng, Y. Bai and S. Chen, Int. J. Hydrogen Energy, 44, 5940 (2019); https://doi.org/10.1016/j.ijhydene.2019.01.114
- D.S. Gavaskar, P. Nagaraju, Y. Vijayakumar, P.S. Reddy and M.V.R. Reddy, J. Asian Ceram. Soc., 8, 605 (2020); https://doi.org/10.1080/21870764.2020.1769820
- D.D. Vuong, L.H. Phuoc, V.X. Hien and N.D. Chien, Mater. Sci. Semicond. Process., 107, 104861 (2020); https://doi.org/10.1016/j.mssp.2019.104861
- S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade and A.V. Moholkar, Vacuum, 181, 109646 (2020); https://doi.org/10.1016/j.vacuum.2020.109646
- L. Kunhikrishnan and R. Shanmugam, J. Mater. Sci. Mater. Electron., 31, 21528 (2020); https://doi.org/10.1007/s10854-020-04665-0
- J. Toupin, H. Strubb, S. Kressman, V. Artero, N. Krins and Ch Laberty-Robert, J. Sol-Gel. Sci. Technol., 89 255 (2019); https://doi.org/10.1007/s10971-018-4896-3
- H. Siddiqui, M.R. Parra, P. Pandey, M.S. Qureshi and F.Z. Haque, J. Sci.-Adv. Mater. Device, 5, 104 (2020); https://doi.org/10.1016/j.jsamd.2020.01.004
- B. Guo, M. Košièek, J. Fu, Y. Qu, G. Lin, O. Baranov, J. Zavašnik, Q. Cheng, K. Ostrikov and U. Cvelbar, Nanomaterials, 9, 1405 (2019); https://doi.org/10.3390/nano9101405
- X. Wei, X. Wang, B. Gao, W. Zou and L. Dong, ACS Omega, 5, 5748 (2020); https://doi.org/10.1021/acsomega.9b03787
- J. Lu, W. Xu, S. Li, W. Liu, M.S. Javed, G. Liu and C. Hu, J. Mater. Sci., 53, 739 (2018); https://doi.org/10.1007/s10853-017-1493-8
- M.S. Alqahtani, N.M.A. Hadia and S.H. Mohamed, Optik, 173, 101 (2018); https://doi.org/10.1016/j.ijleo.2018.08.016
- A. Albert manoharan, R. Chandramohan, R. David prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam and S. AlFaify, J. Mol. Struct., 1171, 388 (2018); https://doi.org/10.1016/j.molstruc.2018.06.018
- G. Akarken, U. Cengiz and T.E. Bektas, J. Adv. Res. Nat. Appl. Sci., 10, 329 (2024); https://doi.org/10.28979/jarnas.1405595
- Z.R. Parekh, S.H. Chaki, A.B. Hirpara, G.H. Patel, R.M. Kannaujiya, A.J. Khimani and M.P. Deshpande, Physica B, 610, 412950 (2021); https://doi.org/10.1016/j.physb.2021.412950
- D. Ghosh, S. Bhandari and D. Khastgir, Phys. Chem. Chem. Phys., 18, 32876 (2016); https://doi.org/10.1039/C6CP06611A
- S.M. Keshk, A.M. Ramadan and S. Bondock, Carbohydr. Polym., 127, 246 (2015); https://doi.org/10.1016/j.carbpol.2015.03.038
- J.S.K. Arockiasamy and C. Johnson, Cermaic Int., 42, 6198 (2016); https://doi.org/10.1016/j.ceramint.2015.12.180
- M. Figiela, M. Wysokowski, M. Galinski, T. Jesionowski and I. Stepniak, Sens. Actuators B Chem., 272, 296 (2018); https://doi.org/10.1016/j.snb.2018.05.173
- S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, J. Mater. Sci. Mater. Electron., 30, 13174 (2019); https://doi.org/10.1007/s10854-019-01681-7
- K.K. Sahu, B. Raj, S. Basu and M. Mohapatra, ACS Omega, 6, 1108 (2021); https://doi.org/10.1021/acsomega.0c03899
- P.E. Lokhande and U.S. Chavan, Inorg. Nano-Met. Chem., 48, 434 (2018); https://doi.org/10.1080/24701556.2019.1569685
- B. Saravanakumar, C. Radhakrishnan, M. Ramasamy, R. Kaliaperumal, A.J. Britten and M. Mkandawire, Results Phys., 13, 102185 (2019); https://doi.org/10.1016/j.rinp.2019.102185
- A.M. Teli, G.J. Navathe, D.S. Patil, P.R. Jadhav, S.B. Patil, T.D. Dongale, M.M. Karanjkar, J.C. Shin and P.S. Patil, Sustain. Energy Fuels, 1, 377 (2017); https://doi.org/10.1039/C6SE00016A
- M. He, L. Xie, X. Zhao, X. Hu, S. Li and Z.-G. Zhu, J. Alloys Compd., 788, 36 (2019); https://doi.org/10.1016/j.jallcom.2019.01.349
- D. Meng, D. Liu, G. Wang, X. San, Y. Shen, Q. Jin and F. Meng, Vacuum, 144, 272 (2017); https://doi.org/10.1016/j.vacuum.2017.08.013
- V.A. Shmatko, A.A. Ulyankina, N.V. Smirnova and G.E. Yalovega, Opt. Spectrosc., 124, 478 (2018); https://doi.org/10.1134/S0030400X18040161
- M. Rawat and D.S. Rawat, ACS Sustain. Chem.& Eng., 8, 13701 (2020); https://doi.org/10.1021/acssuschemeng.0c03898
- S.K. Shinde, S.M. Mohite, A.A. Kadam, H.M. Yadav, G.S. Ghodake, K.Y. Rajpure, D.S. Lee and D.-Y. Kim, J. Electroanal. Chem., 850, 113433 (2019); https://doi.org/10.1016/j.jelechem.2019.113433
- N. Mohammadi, K. Pourreza, N. Bahrami Adeh and M. Omidvar, J. Alloys Compd., 883, 160874 (2021); https://doi.org/10.1016/j.jallcom.2021.160874
- M. Xu, N. Fu, X. Wang and Z. Yang, J. Mater. Sci. Mater. Electron., 31, 16027 (2020); https://doi.org/10.1007/s10854-020-04165-1
- S.K. Shinde, H.M. Yadav, G.S. Ghodake, A.A. Kadam, V.S. Kumbhar, J. Yang, K. Hwang, A.D. Jagadale, S. Kumar and D.Y. Kim, Colloids Surf. B Biointerfaces, 181, 1004 (2019); https://doi.org/10.1016/j.colsurfb.2019.05.079
- K. Ashokkumar, S. Dhanapandian, S. Suthakaran and N. Krishnakumar, Mater. Technol., 37, 2861 (2022); https://doi.org/10.1080/10667857.2022.2083483
- D. Govindarajan, F.J. Johanson, V. Uma shankar, M.J. Salethraj and R. Gopalakrishnan, J. Mater. Sci. Mater. Electron., 32, 19434 (2021); https://doi.org/10.1007/s10854-021-06460-x
- A. Ray, A. Roy, M. Ghosh, J.A. Ramos-Ramón, S. Saha, U. Pal, S.K. Bhattacharya and S. Das, Appl. Surf. Sci., 463, 513 (2019); https://doi.org/10.1016/j.apsusc.2018.08.259
- K.M. Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan and M.V.A. Raj, Physica E, 119, 114033 (2020); https://doi.org/10.1016/j.physe.2020.114033
- A. Ghosh, M. Miah, A. Bera, S.K. Saha and B. Ghosh, J. Alloys Compd., 862, 158549 (2021); https://doi.org/10.1016/j.jallcom.2020.158549
- H. Shi, M. Ma, P. Liu, X. Jia, F. Yang, B. Zhao and Z. Li, J. Electroanal. Chem., 876, 114481 (2020); https://doi.org/10.1016/j.jelechem.2020.114481
- B. Padmaja, S. Dhanapandian and K. Ashokkumar, Mater. Sci. Eng. B, 297, 116699 (2023); https://doi.org/10.1016/j.mseb.2023.116699
- Y. Zhan, J. Bai, F. Guo, H. Zhou, R. Shu, Y. Yu and L. Qian, J. Alloys Compd., 885, 161014 (2021); https://doi.org/10.1016/j.jallcom.2021.161014
References
Y. Lu, Z.A. Khan, M.S. Alvarez-Alvarado, Y. Zhang, Z. Huang and M. Imran, Sustainability, 12, 5078 (2020); https://doi.org/10.3390/su12125078
M. Vijayakumar, A. Bharathi Sankar, D. Sri Rohita, T.N. Rao and M. Karthik, ACS Sustain. Chem.& Eng., 7, 17175 (2019); https://doi.org/10.1021/acssuschemeng.9b03568
A.K. Yedluri and H.-J. Kim, RSC Adv., 9, 1115 (2019); https://doi.org/10.1039/C8RA09081E
C. Yan, M. Jin, X. Pan, L. Ma and X. Ma, RSC Adv., 10, 9299 (2020); https://doi.org/10.1039/C9RA10701K
M. Minakshi S. Higley, C. Baur, D.R.G. Mitchell, R.T. Jones and M. Fichtner, RSC Adv., 9, 26981 (2019); https://doi.org/10.1039/C9RA04289J
L. Chen, D. Liu and P. Yang, RSC Adv., 9, 12793 (2019); https://doi.org/10.1039/C9RA01928F
B.A. Mola, G. Mani, S. Sambasivam, M.R. Pallavolu, A.A. Ghfar, M. Ouladsmane, M. Alsawat, N.R. Reddy, Y. Noh, S.K. Jilcha, H.J. Kim, I.M. Obaidat and Y.A. Kumar, J. Energy Storage, 43, 103155 (2021); https://doi.org/10.1016/j.est.2021.103155
P. Simon and Y. Gogotsi, Acc. Chem. Res., 46, 1094 (2013); https://doi.org/10.1021/ar200306b
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin and Z.X. Shen, Adv. Sci., 5, 1700322 (2018); https://doi.org/10.1002/advs.201700322
F. Chen, C. Chen, Q. Hu, B. Xiang, T. Song, X. Zou, W. Li, B. Xiong and M. Deng, Chem. Eng. J., 401, 126145 (2020); https://doi.org/10.1016/j.cej.2020.126145
K. Kierzek and G. Gryglewicz, Molecules, 25, 4255 (2020); https://doi.org/10.3390/molecules25184255
R. He, G. Xu, Y. Wu, K. Shi, H. Tang, P. Ma, J. Zeng, Y. Bai and S. Chen, Int. J. Hydrogen Energy, 44, 5940 (2019); https://doi.org/10.1016/j.ijhydene.2019.01.114
D.S. Gavaskar, P. Nagaraju, Y. Vijayakumar, P.S. Reddy and M.V.R. Reddy, J. Asian Ceram. Soc., 8, 605 (2020); https://doi.org/10.1080/21870764.2020.1769820
D.D. Vuong, L.H. Phuoc, V.X. Hien and N.D. Chien, Mater. Sci. Semicond. Process., 107, 104861 (2020); https://doi.org/10.1016/j.mssp.2019.104861
S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade and A.V. Moholkar, Vacuum, 181, 109646 (2020); https://doi.org/10.1016/j.vacuum.2020.109646
L. Kunhikrishnan and R. Shanmugam, J. Mater. Sci. Mater. Electron., 31, 21528 (2020); https://doi.org/10.1007/s10854-020-04665-0
J. Toupin, H. Strubb, S. Kressman, V. Artero, N. Krins and Ch Laberty-Robert, J. Sol-Gel. Sci. Technol., 89 255 (2019); https://doi.org/10.1007/s10971-018-4896-3
H. Siddiqui, M.R. Parra, P. Pandey, M.S. Qureshi and F.Z. Haque, J. Sci.-Adv. Mater. Device, 5, 104 (2020); https://doi.org/10.1016/j.jsamd.2020.01.004
B. Guo, M. Košièek, J. Fu, Y. Qu, G. Lin, O. Baranov, J. Zavašnik, Q. Cheng, K. Ostrikov and U. Cvelbar, Nanomaterials, 9, 1405 (2019); https://doi.org/10.3390/nano9101405
X. Wei, X. Wang, B. Gao, W. Zou and L. Dong, ACS Omega, 5, 5748 (2020); https://doi.org/10.1021/acsomega.9b03787
J. Lu, W. Xu, S. Li, W. Liu, M.S. Javed, G. Liu and C. Hu, J. Mater. Sci., 53, 739 (2018); https://doi.org/10.1007/s10853-017-1493-8
M.S. Alqahtani, N.M.A. Hadia and S.H. Mohamed, Optik, 173, 101 (2018); https://doi.org/10.1016/j.ijleo.2018.08.016
A. Albert manoharan, R. Chandramohan, R. David prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam and S. AlFaify, J. Mol. Struct., 1171, 388 (2018); https://doi.org/10.1016/j.molstruc.2018.06.018
G. Akarken, U. Cengiz and T.E. Bektas, J. Adv. Res. Nat. Appl. Sci., 10, 329 (2024); https://doi.org/10.28979/jarnas.1405595
Z.R. Parekh, S.H. Chaki, A.B. Hirpara, G.H. Patel, R.M. Kannaujiya, A.J. Khimani and M.P. Deshpande, Physica B, 610, 412950 (2021); https://doi.org/10.1016/j.physb.2021.412950
D. Ghosh, S. Bhandari and D. Khastgir, Phys. Chem. Chem. Phys., 18, 32876 (2016); https://doi.org/10.1039/C6CP06611A
S.M. Keshk, A.M. Ramadan and S. Bondock, Carbohydr. Polym., 127, 246 (2015); https://doi.org/10.1016/j.carbpol.2015.03.038
J.S.K. Arockiasamy and C. Johnson, Cermaic Int., 42, 6198 (2016); https://doi.org/10.1016/j.ceramint.2015.12.180
M. Figiela, M. Wysokowski, M. Galinski, T. Jesionowski and I. Stepniak, Sens. Actuators B Chem., 272, 296 (2018); https://doi.org/10.1016/j.snb.2018.05.173
S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, J. Mater. Sci. Mater. Electron., 30, 13174 (2019); https://doi.org/10.1007/s10854-019-01681-7
K.K. Sahu, B. Raj, S. Basu and M. Mohapatra, ACS Omega, 6, 1108 (2021); https://doi.org/10.1021/acsomega.0c03899
P.E. Lokhande and U.S. Chavan, Inorg. Nano-Met. Chem., 48, 434 (2018); https://doi.org/10.1080/24701556.2019.1569685
B. Saravanakumar, C. Radhakrishnan, M. Ramasamy, R. Kaliaperumal, A.J. Britten and M. Mkandawire, Results Phys., 13, 102185 (2019); https://doi.org/10.1016/j.rinp.2019.102185
A.M. Teli, G.J. Navathe, D.S. Patil, P.R. Jadhav, S.B. Patil, T.D. Dongale, M.M. Karanjkar, J.C. Shin and P.S. Patil, Sustain. Energy Fuels, 1, 377 (2017); https://doi.org/10.1039/C6SE00016A
M. He, L. Xie, X. Zhao, X. Hu, S. Li and Z.-G. Zhu, J. Alloys Compd., 788, 36 (2019); https://doi.org/10.1016/j.jallcom.2019.01.349
D. Meng, D. Liu, G. Wang, X. San, Y. Shen, Q. Jin and F. Meng, Vacuum, 144, 272 (2017); https://doi.org/10.1016/j.vacuum.2017.08.013
V.A. Shmatko, A.A. Ulyankina, N.V. Smirnova and G.E. Yalovega, Opt. Spectrosc., 124, 478 (2018); https://doi.org/10.1134/S0030400X18040161
M. Rawat and D.S. Rawat, ACS Sustain. Chem.& Eng., 8, 13701 (2020); https://doi.org/10.1021/acssuschemeng.0c03898
S.K. Shinde, S.M. Mohite, A.A. Kadam, H.M. Yadav, G.S. Ghodake, K.Y. Rajpure, D.S. Lee and D.-Y. Kim, J. Electroanal. Chem., 850, 113433 (2019); https://doi.org/10.1016/j.jelechem.2019.113433
N. Mohammadi, K. Pourreza, N. Bahrami Adeh and M. Omidvar, J. Alloys Compd., 883, 160874 (2021); https://doi.org/10.1016/j.jallcom.2021.160874
M. Xu, N. Fu, X. Wang and Z. Yang, J. Mater. Sci. Mater. Electron., 31, 16027 (2020); https://doi.org/10.1007/s10854-020-04165-1
S.K. Shinde, H.M. Yadav, G.S. Ghodake, A.A. Kadam, V.S. Kumbhar, J. Yang, K. Hwang, A.D. Jagadale, S. Kumar and D.Y. Kim, Colloids Surf. B Biointerfaces, 181, 1004 (2019); https://doi.org/10.1016/j.colsurfb.2019.05.079
K. Ashokkumar, S. Dhanapandian, S. Suthakaran and N. Krishnakumar, Mater. Technol., 37, 2861 (2022); https://doi.org/10.1080/10667857.2022.2083483
D. Govindarajan, F.J. Johanson, V. Uma shankar, M.J. Salethraj and R. Gopalakrishnan, J. Mater. Sci. Mater. Electron., 32, 19434 (2021); https://doi.org/10.1007/s10854-021-06460-x
A. Ray, A. Roy, M. Ghosh, J.A. Ramos-Ramón, S. Saha, U. Pal, S.K. Bhattacharya and S. Das, Appl. Surf. Sci., 463, 513 (2019); https://doi.org/10.1016/j.apsusc.2018.08.259
K.M. Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan and M.V.A. Raj, Physica E, 119, 114033 (2020); https://doi.org/10.1016/j.physe.2020.114033
A. Ghosh, M. Miah, A. Bera, S.K. Saha and B. Ghosh, J. Alloys Compd., 862, 158549 (2021); https://doi.org/10.1016/j.jallcom.2020.158549
H. Shi, M. Ma, P. Liu, X. Jia, F. Yang, B. Zhao and Z. Li, J. Electroanal. Chem., 876, 114481 (2020); https://doi.org/10.1016/j.jelechem.2020.114481
B. Padmaja, S. Dhanapandian and K. Ashokkumar, Mater. Sci. Eng. B, 297, 116699 (2023); https://doi.org/10.1016/j.mseb.2023.116699
Y. Zhan, J. Bai, F. Guo, H. Zhou, R. Shu, Y. Yu and L. Qian, J. Alloys Compd., 885, 161014 (2021); https://doi.org/10.1016/j.jallcom.2021.161014