Copyright (c) 2024 Dr. Sunita Shirke
This work is licensed under a Creative Commons Attribution 4.0 International License.
Novel Triazolo[4,3-a]pyrazines as Potential MmpL3 Inhibitors: Design, Synthesis, Antitubercular Evaluation and Molecular Docking Studies
Corresponding Author(s) : Sunita Shirke
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
A series of biologically active novel triazolo[4,3-a]pyrazines (5a-f) were synthesized and characterized by spectroscopic techniques. The synthesized compounds 5a-f were evaluated for their in vitro anti-tubercular (anti-TB) activity against drug-sensitive Mtb H37Rv (ATCC 27294) strain as well as two drug-resistant Mtb strains viz. Mtb H37Rv ATCC 35822 (INH-resistant) and Mtb H37Rv ATCC 35837 (ETH-resistant). The synthesized compounds 5a-f displayed good to moderate anti-TB activity against drug-sensitive, INH-resistant and ETH-resistant Mtb H37Rv strains. Among all the compounds tested, compound 5c was found to be significantly potent. It inhibited the growth of drug-sensitive, INH-resistant and ETH-resistant Mtb H37Rv strains with MIC values 0.59 ± 0.11 µM, 20.83 ± 0.67 µM and 15.37 ± 0.14 µM, respectively. Moreover, compounds 5a-f were also tested for their cytotoxic efficacy against the mammalian Vero cell line at a maximum concentration of 50 µM. Molecular docking experiments of compounds 5a-f with the mycobacterial membrane protein large 3 (MmpL3) were performed to justify the biological activity and provide insight into the possible mechanism of action and binding mode of compounds. In silico predictions were used to validate compound toxicity descriptors, drug scores and drug-likeness properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Pai, M.A. Behr, D. Dowdy, K. Dheda, M. Divangahi, C.C. Boehme, A. Ginsberg, S. Swaminathan, M. Spigelman, H. Getahun, D. Menzies and M. Raviglione, Nat. Rev. Dis. Primers, 2, 16076 (2016); https://doi.org/10.1038/nrdp.2016.76
- M.S. Raghu, C.B. Pradeep Kumar, K.N.N. Prasad, M.K. Prashanth, Y.K. Kumarswamy, S. Chandrasekhar and B. Veeresh, ACS Comb. Sci., 22, 509 (2020); https://doi.org/10.1021/acscombsci.0c00038
- A. Natarajan, P.M. Beena, A.V. Devnikar and S. Mali, Indian J. Tuberc., 67, 295 (2020); https://doi.org/10.1016/j.ijtb.2020.02.005
- C.J. Cambier, S. Falkow and L. Ramakrishnan, Cell, 159, 1497 (2014); https://doi.org/10.1016/j.cell.2014.11.024
- M.S. Raghu, C.B. Pradeep Kumar, K. Yogesh Kumar, M.K. Prashanth, M.Y. Alshahrani, I. Ahmad and R. Jain, Bioorg. Med. Chem. Lett., 60, 128604 (2022); https://doi.org/10.1016/j.bmcl.2022.128604
- C. Vilchèze and W.R. Jacobs Jr., J. Mol. Biol., 431, 3450 (2019); https://doi.org/10.1016/j.jmb.2019.02.016
- K.J. Seung, S. Keshavjee and M.L. Rich, Cold Spring Harb. Perspect. Med., 5, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
- Q.M. Trinh, H.L. Nguyen, T.N. Do, V.N. Nguyen, B.H. Nguyen, T.V.A. Nguyen, V. Sintchenko and B.J. Marais, Int. J. Infect. Dis., 46, 56 (2016); https://doi.org/10.1016/j.ijid.2016.03.021
- N. Kuroki, Y. Mochizuki and H. Mori, J. Chem. Educ., 100, 647 (2023); https://doi.org/10.1021/acs.jchemed.2c00837
- J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R. Müller and A. Tkatchenko, Chem. Rev., 121, 9816 (2021); https://doi.org/10.1021/acs.chemrev.1c00107
- Y.F. Shi, Z.X. Yang, S. Ma, P.L. Kang, C. Shang, P. Hu and Z.P. Liu, Engineering, 27, 70 (2023); https://doi.org/10.1016/j.eng.2023.04.013
- X. Yuan, L. Li, Z. Shi, H. Liang, S. Li and Z. Qiao, Adv. Powd. Mat., 1, 100026 (2022); https://doi.org/10.1016/j.apmate.2021.12.002
- F. Pan, A.T. Jalil, F. Alsaikhan, M. Adil, A.J. Kadhim, D.A.A. Amran, M. Abosaooda, A.S. Altamimi, S.M.D. Younis, A.N.K. Lup, S. Tavassoli, H. Balakheyli and A. Soltani, Diamond Rel. Mater., 136, 110044 (2023); https://doi.org/10.1016/j.diamond.2023.110044
- L. Pinzi and G. Rastelli, Int. J. Mol. Sci., 20, 4331 (2019); https://doi.org/10.3390/ijms20184331
- A. Abdolmaleki, F. Shiri and J.B. Ghasemi, Use of Molecular Docking as a Decision-Making Tool in Drug Discovery, In: Molecular Docking for Computer-Aided Drug Design, Academic Press, Chap. 11, pp. 229-243 (2020).
- G.M. Morris and M. Lim-Wilby, Methods Mol. Biol., 443, 365 (2008); https://doi.org/10.1007/978-1-59745-177-2_19
- X.-Y. Meng, H.-X. Zhang, M. Mezei and M. Cui, Curr. Computeraided Drug Des., 7, 146 (2011); https://doi.org/10.2174/157340911795677602
- A. Gomtsyan, Chem. Heterocycl. Compd., 48, 7 (2012); https://doi.org/10.1007/s10593-012-0960-z
- N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
- N. Tambat, S.K. Mulani, A. Ahmad, S.B. Shaikh and K. Ahmed, Russ. J. Bioorg. Chem., 48, 865 (2022); https://doi.org/10.1134/S1068162022050259
- R. Raveesha, K.Y. Kumar, M.S. Raghu, S.B.B. Prasad, A. Alsalme, P. Krishnaiah and M.K. Prashanth, J. Mol. Struct., 1255, 132407 (2022); https://doi.org/10.1016/j.molstruc.2022.132407
- D.J. Jethava, M.A. Borad, M.N. Bhoi, P.T. Acharya, Z.A. Bhavsar and H.D. Patel, Arab. J. Chem., 13, 8532 (2020); https://doi.org/10.1016/j.arabjc.2020.09.038
- D.P. Hiwarale, W.B. Chandane, S.M. Deshmukh, S.M. Arde, V.D. Sonawane, M.G. Kukade, N.M. Naik, K.D. Sonawane, G.S. Rashinkar and S.G. Sonkamble, J. Mol. Struct., 1286, 135556 (2023); https://doi.org/10.1016/j.molstruc.2023.135556
- M.G. Kukade, U.N. Pol, R.P. Kagne, W.B. Chandane, A.J. Bodake, M.K. Prashanth, K.Y. Kumar and M.S. Raghu, J. Indian Chem. Soc., 99, 100509 (2022); https://doi.org/10.1016/j.jics.2022.100509
- P.J. Nelson and K.T. Potts, J. Org. Chem., 27, 3243 (1962); https://doi.org/10.1021/jo01056a061
- O.R. Thiel and M.M. Achmatowicz, Org. Synth., 90, 287 (2013); https://doi.org/10.15227/orgsyn.090.0287
- G. Hu, C. Wang, X. Xin, S. Li, Z. Li, Y. Zhao and P. Gong, New J. Chem., 43, 10190 (2019); https://doi.org/10.1039/C9NJ02154J
- J. Park, Y.-J. Yoon, B. Kim, H.-G. Lee, S.-B. Kang, G. Sung, J.-J. Kim and S.-G. Lee, Synthesis, 44, 42 (2012); https://doi.org/10.1055/s-0031-1289622
- M. Madaiah, M.K. Prashanth, H.D. Revanasiddappa and B. Veeresh, New J. Chem., 40, 9194 (2016); https://doi.org/10.1039/C6NJ02069K
- C.B.P. Kumar, M.S. Raghu, B.S. Prathibha, M.K. Prashanth, K.Y. Kumar, G. Kanthimathi, L. Parashuram and F.A. Alharthi, Bioorg. Med. Chem. Lett., 44, 128118 (2021); https://doi.org/10.1016/j.bmcl.2021.128118
- H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov and P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235
- B. Zhang, J. Li, X. Yang, L. Wu, J. Zhang, Y. Yang, Y. Zhao, L. Zhang, X. Yang, X. Yang, X. Cheng, Z. Liu, B. Jiang, H. Jiang, L.W. Guddat, H. Yang and Z. Rao, Cell, 176, 636 (2019); https://doi.org/10.1016/j.cell.2019.01.003
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- A. Axenopoulos, P. Daras, G.E. Papadopoulos and E.N. Houstis, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 10, 135 (2013); https://doi.org/10.1109/TCBB.2012.149
- R.S. Parulekar, S.H. Barage, C.B. Jalkute, M.J. Dhanavade, P.M. Fandilolu and K.D. Sonawane, Protein J., 32, 467 (2013); https://doi.org/10.1007/s10930-013-9506-1
- C.B. Jalkute, S.H. Barage, M.J. Dhanavade and K.D. Sonawane, Protein J., 32, 356 (2013); https://doi.org/10.1007/s10930-013-9492-3
- M.J. Dhanavade, C.B. Jalkute, S.H. Barage and K.D. Sonawane, Comput. Biol. Med., 43, 2063 (2013); https://doi.org/10.1016/j.compbiomed.2013.09.021
- S.B. Paymal, S.S. Barale, S.V. Supanekar and K.D. Sonawane, Comput. Biol. Med., 159, 106965 (2023); https://doi.org/10.1016/j.compbiomed.2023.106965
- W. Tian, C. Chen, X. Lei, J. Zhao and J. Liang, Nucleic Acids Res., 46(W1), W363 (2018); https://doi.org/10.1093/nar/gky473
- E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
- A.C. Wallace, R.A. Laskowski and J.M. Thornton, Protein Eng. Des. Sel., 8, 127 (1995); https://doi.org/10.1093/protein/8.2.127
- R.A. Laskowski and M.B. Swindells, J. Chem. Inf. Model., 51, 2778 (2011); https://doi.org/10.1021/ci200227u
- C.A. Lipinski, Drug Discov. Today. Technol., 1, 337 (2004); https://doi.org/10.1016/j.ddtec.2004.11.007
- B.C. Nunes, M.M. Martins, R. Chang, S.A.L. Morais, E.A. Nascimento, A. de Oliveira, L.C.S. Cunha, C.V. da Silva, T.L. Teixeira, M.A.L.V. Ambrósio, C.H.G. Martins and F.J.T. de Aquino, Ind. Crops Prod., 92, 277 (2016); https://doi.org/10.1016/j.indcrop.2016.08.016
- G. Indrayanto, G.S. Putra and F. Suhud, Profiles Drug Subst. Excip. Relat. Methodol., 46, 273 (2021); https://doi.org/10.1016/bs.podrm.2020.07.005
- J.C. Pritchett, L. Naesens, J. Montoya, eds.: L. Flamand, I. Lautenschlager, G. Krueger and D. Ablashi, Treating HHV-6 Infections: The Laboratory Efficacy and Clinical Use of Anti-HHV-6 Agents, In: Human Herpesviruses HHV-6A, HHV-6B, and HHV-7: Diagnosis and Clinical Management, Elsevier, edn. 3, pp. 311-331 (2014); https://doi.org/10.1016/B978-0-444-62703-2.00019-7
- J.R. Bolla, Biochem. Soc. Trans., 48, 1463 (2020); https://doi.org/10.1042/BST20190950
- M.D. Umare, P.B. Khedekar and R.V. Chikhale, ChemMedChem, 16, 3136 (2021); https://doi.org/10.1002/cmdc.202100359
- M. Shao, M. McNeil, G.M. Cook and X. Lu, Eur. J. Med. Chem., 200, 112390 (2020); https://doi.org/10.1016/j.ejmech.2020.112390
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0
- J. Ali, P. Camilleri, M.B. Brown, A.J. Hutt and S.B. Kirton, J. Chem. Inf. Model., 52, 420 (2012); https://doi.org/10.1021/ci200387c
- M. Rudrapal, D. Chetia and V. Singh, J. Enzyme Inhib. Med. Chem., 32, 1159 (2017); https://doi.org/10.1080/14756366.2017.1363742
- T. Sander, J. Freyss, M. Von Korff, J.R. Reich and C. Rufener, J. Chem. Inf. Model., 49, 232 (2009); https://doi.org/10.1021/ci800305f
References
M. Pai, M.A. Behr, D. Dowdy, K. Dheda, M. Divangahi, C.C. Boehme, A. Ginsberg, S. Swaminathan, M. Spigelman, H. Getahun, D. Menzies and M. Raviglione, Nat. Rev. Dis. Primers, 2, 16076 (2016); https://doi.org/10.1038/nrdp.2016.76
M.S. Raghu, C.B. Pradeep Kumar, K.N.N. Prasad, M.K. Prashanth, Y.K. Kumarswamy, S. Chandrasekhar and B. Veeresh, ACS Comb. Sci., 22, 509 (2020); https://doi.org/10.1021/acscombsci.0c00038
A. Natarajan, P.M. Beena, A.V. Devnikar and S. Mali, Indian J. Tuberc., 67, 295 (2020); https://doi.org/10.1016/j.ijtb.2020.02.005
C.J. Cambier, S. Falkow and L. Ramakrishnan, Cell, 159, 1497 (2014); https://doi.org/10.1016/j.cell.2014.11.024
M.S. Raghu, C.B. Pradeep Kumar, K. Yogesh Kumar, M.K. Prashanth, M.Y. Alshahrani, I. Ahmad and R. Jain, Bioorg. Med. Chem. Lett., 60, 128604 (2022); https://doi.org/10.1016/j.bmcl.2022.128604
C. Vilchèze and W.R. Jacobs Jr., J. Mol. Biol., 431, 3450 (2019); https://doi.org/10.1016/j.jmb.2019.02.016
K.J. Seung, S. Keshavjee and M.L. Rich, Cold Spring Harb. Perspect. Med., 5, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
Q.M. Trinh, H.L. Nguyen, T.N. Do, V.N. Nguyen, B.H. Nguyen, T.V.A. Nguyen, V. Sintchenko and B.J. Marais, Int. J. Infect. Dis., 46, 56 (2016); https://doi.org/10.1016/j.ijid.2016.03.021
N. Kuroki, Y. Mochizuki and H. Mori, J. Chem. Educ., 100, 647 (2023); https://doi.org/10.1021/acs.jchemed.2c00837
J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R. Müller and A. Tkatchenko, Chem. Rev., 121, 9816 (2021); https://doi.org/10.1021/acs.chemrev.1c00107
Y.F. Shi, Z.X. Yang, S. Ma, P.L. Kang, C. Shang, P. Hu and Z.P. Liu, Engineering, 27, 70 (2023); https://doi.org/10.1016/j.eng.2023.04.013
X. Yuan, L. Li, Z. Shi, H. Liang, S. Li and Z. Qiao, Adv. Powd. Mat., 1, 100026 (2022); https://doi.org/10.1016/j.apmate.2021.12.002
F. Pan, A.T. Jalil, F. Alsaikhan, M. Adil, A.J. Kadhim, D.A.A. Amran, M. Abosaooda, A.S. Altamimi, S.M.D. Younis, A.N.K. Lup, S. Tavassoli, H. Balakheyli and A. Soltani, Diamond Rel. Mater., 136, 110044 (2023); https://doi.org/10.1016/j.diamond.2023.110044
L. Pinzi and G. Rastelli, Int. J. Mol. Sci., 20, 4331 (2019); https://doi.org/10.3390/ijms20184331
A. Abdolmaleki, F. Shiri and J.B. Ghasemi, Use of Molecular Docking as a Decision-Making Tool in Drug Discovery, In: Molecular Docking for Computer-Aided Drug Design, Academic Press, Chap. 11, pp. 229-243 (2020).
G.M. Morris and M. Lim-Wilby, Methods Mol. Biol., 443, 365 (2008); https://doi.org/10.1007/978-1-59745-177-2_19
X.-Y. Meng, H.-X. Zhang, M. Mezei and M. Cui, Curr. Computeraided Drug Des., 7, 146 (2011); https://doi.org/10.2174/157340911795677602
A. Gomtsyan, Chem. Heterocycl. Compd., 48, 7 (2012); https://doi.org/10.1007/s10593-012-0960-z
N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
N. Tambat, S.K. Mulani, A. Ahmad, S.B. Shaikh and K. Ahmed, Russ. J. Bioorg. Chem., 48, 865 (2022); https://doi.org/10.1134/S1068162022050259
R. Raveesha, K.Y. Kumar, M.S. Raghu, S.B.B. Prasad, A. Alsalme, P. Krishnaiah and M.K. Prashanth, J. Mol. Struct., 1255, 132407 (2022); https://doi.org/10.1016/j.molstruc.2022.132407
D.J. Jethava, M.A. Borad, M.N. Bhoi, P.T. Acharya, Z.A. Bhavsar and H.D. Patel, Arab. J. Chem., 13, 8532 (2020); https://doi.org/10.1016/j.arabjc.2020.09.038
D.P. Hiwarale, W.B. Chandane, S.M. Deshmukh, S.M. Arde, V.D. Sonawane, M.G. Kukade, N.M. Naik, K.D. Sonawane, G.S. Rashinkar and S.G. Sonkamble, J. Mol. Struct., 1286, 135556 (2023); https://doi.org/10.1016/j.molstruc.2023.135556
M.G. Kukade, U.N. Pol, R.P. Kagne, W.B. Chandane, A.J. Bodake, M.K. Prashanth, K.Y. Kumar and M.S. Raghu, J. Indian Chem. Soc., 99, 100509 (2022); https://doi.org/10.1016/j.jics.2022.100509
P.J. Nelson and K.T. Potts, J. Org. Chem., 27, 3243 (1962); https://doi.org/10.1021/jo01056a061
O.R. Thiel and M.M. Achmatowicz, Org. Synth., 90, 287 (2013); https://doi.org/10.15227/orgsyn.090.0287
G. Hu, C. Wang, X. Xin, S. Li, Z. Li, Y. Zhao and P. Gong, New J. Chem., 43, 10190 (2019); https://doi.org/10.1039/C9NJ02154J
J. Park, Y.-J. Yoon, B. Kim, H.-G. Lee, S.-B. Kang, G. Sung, J.-J. Kim and S.-G. Lee, Synthesis, 44, 42 (2012); https://doi.org/10.1055/s-0031-1289622
M. Madaiah, M.K. Prashanth, H.D. Revanasiddappa and B. Veeresh, New J. Chem., 40, 9194 (2016); https://doi.org/10.1039/C6NJ02069K
C.B.P. Kumar, M.S. Raghu, B.S. Prathibha, M.K. Prashanth, K.Y. Kumar, G. Kanthimathi, L. Parashuram and F.A. Alharthi, Bioorg. Med. Chem. Lett., 44, 128118 (2021); https://doi.org/10.1016/j.bmcl.2021.128118
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov and P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235
B. Zhang, J. Li, X. Yang, L. Wu, J. Zhang, Y. Yang, Y. Zhao, L. Zhang, X. Yang, X. Yang, X. Cheng, Z. Liu, B. Jiang, H. Jiang, L.W. Guddat, H. Yang and Z. Rao, Cell, 176, 636 (2019); https://doi.org/10.1016/j.cell.2019.01.003
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
A. Axenopoulos, P. Daras, G.E. Papadopoulos and E.N. Houstis, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 10, 135 (2013); https://doi.org/10.1109/TCBB.2012.149
R.S. Parulekar, S.H. Barage, C.B. Jalkute, M.J. Dhanavade, P.M. Fandilolu and K.D. Sonawane, Protein J., 32, 467 (2013); https://doi.org/10.1007/s10930-013-9506-1
C.B. Jalkute, S.H. Barage, M.J. Dhanavade and K.D. Sonawane, Protein J., 32, 356 (2013); https://doi.org/10.1007/s10930-013-9492-3
M.J. Dhanavade, C.B. Jalkute, S.H. Barage and K.D. Sonawane, Comput. Biol. Med., 43, 2063 (2013); https://doi.org/10.1016/j.compbiomed.2013.09.021
S.B. Paymal, S.S. Barale, S.V. Supanekar and K.D. Sonawane, Comput. Biol. Med., 159, 106965 (2023); https://doi.org/10.1016/j.compbiomed.2023.106965
W. Tian, C. Chen, X. Lei, J. Zhao and J. Liang, Nucleic Acids Res., 46(W1), W363 (2018); https://doi.org/10.1093/nar/gky473
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
A.C. Wallace, R.A. Laskowski and J.M. Thornton, Protein Eng. Des. Sel., 8, 127 (1995); https://doi.org/10.1093/protein/8.2.127
R.A. Laskowski and M.B. Swindells, J. Chem. Inf. Model., 51, 2778 (2011); https://doi.org/10.1021/ci200227u
C.A. Lipinski, Drug Discov. Today. Technol., 1, 337 (2004); https://doi.org/10.1016/j.ddtec.2004.11.007
B.C. Nunes, M.M. Martins, R. Chang, S.A.L. Morais, E.A. Nascimento, A. de Oliveira, L.C.S. Cunha, C.V. da Silva, T.L. Teixeira, M.A.L.V. Ambrósio, C.H.G. Martins and F.J.T. de Aquino, Ind. Crops Prod., 92, 277 (2016); https://doi.org/10.1016/j.indcrop.2016.08.016
G. Indrayanto, G.S. Putra and F. Suhud, Profiles Drug Subst. Excip. Relat. Methodol., 46, 273 (2021); https://doi.org/10.1016/bs.podrm.2020.07.005
J.C. Pritchett, L. Naesens, J. Montoya, eds.: L. Flamand, I. Lautenschlager, G. Krueger and D. Ablashi, Treating HHV-6 Infections: The Laboratory Efficacy and Clinical Use of Anti-HHV-6 Agents, In: Human Herpesviruses HHV-6A, HHV-6B, and HHV-7: Diagnosis and Clinical Management, Elsevier, edn. 3, pp. 311-331 (2014); https://doi.org/10.1016/B978-0-444-62703-2.00019-7
J.R. Bolla, Biochem. Soc. Trans., 48, 1463 (2020); https://doi.org/10.1042/BST20190950
M.D. Umare, P.B. Khedekar and R.V. Chikhale, ChemMedChem, 16, 3136 (2021); https://doi.org/10.1002/cmdc.202100359
M. Shao, M. McNeil, G.M. Cook and X. Lu, Eur. J. Med. Chem., 200, 112390 (2020); https://doi.org/10.1016/j.ejmech.2020.112390
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0
J. Ali, P. Camilleri, M.B. Brown, A.J. Hutt and S.B. Kirton, J. Chem. Inf. Model., 52, 420 (2012); https://doi.org/10.1021/ci200387c
M. Rudrapal, D. Chetia and V. Singh, J. Enzyme Inhib. Med. Chem., 32, 1159 (2017); https://doi.org/10.1080/14756366.2017.1363742
T. Sander, J. Freyss, M. Von Korff, J.R. Reich and C. Rufener, J. Chem. Inf. Model., 49, 232 (2009); https://doi.org/10.1021/ci800305f