Copyright (c) 2024 Reshmi C P, RAMESH A. R.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structure, Optical Properties and Magnetocaloric Effects in Gd3Fe5O12 Garnet Synthesized by Solid State Method
Corresponding Author(s) : A.R. Ramesh
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
In this work, gadolinium iron garnet (Gd3Fe5O12) was synthesized using the solid-state ceramic method. The structural analysis, confirmed through Rietveld refinement, indicated the formation of a single-phase garnet structure. Scanning electron microscopy studies revealed uniform grain size and homogeneity in the sintered material, while UV-vis absorption studies showed a peak at 300 nm, indicating strong ultraviolet interaction and an optical band gap of 3.64 eV, suggesting optoelectronic potential. The fluorescence emission spectrum shows a band at 435 nm, while the excitation spectrum exhibits bands at 275 and 360 nm. The magnetic measurements demonstrated Gd ion ordering at low temperatures, with a compensation temperature around 290 K. Arrott plots confirmed the second-order magnetic phase transition. Importantly, Gd3Fe5O12 exhibited both normal and inverse magnetocaloric effects, with a maximum magnetic entropy change of 1.05 J kg–1 K–1 at 230 K under 9 T magnetic field. These properties indicate Gd3Fe5O12 material as a promising candidate for magnetic refrigeration and optoelectronic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.I.A.A. Maksoud, R.A. Fahim, A.E. Shalan, M.A. Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour and D.W. Rooney, Environ. Chem. Lett., 19, 375 (2021); https://doi.org/10.1007/s10311-020-01075-w
- B. Monfared and B. Palm, Int. J. Refrig., 96, 25 (2018); https://doi.org/10.1016/j.ijrefrig.2018.08.012
- V.I. Nizhankovskiy, J. Alloys Compd., 852, 156938 (2021); https://doi.org/10.1016/J.JALLCOM.2020.156938
- Z.T. Karipbayev, K. Kumarbekov, I. Manika, A. Dauletbekova, A.L. Kozlovskiy, D. Sugak, S.B. Ubizskii, A. Akilbekov, Y. Suchikova and A.I. Popov, Phys. Status Solidi., C Curr. Top. Solid State Phys., 259, 2100415 (2022); https://doi.org/10.1002/pssb.202100415
- S.I. El Dek and R.M. Amin, Radiat. Phys. Chem., 204, 110709 (2023); https://doi.org/10.1016/j.radphyschem.2022.110709
- P.B.A. Fechine, R.S.T. Moretzsohn, R.C.S. Costa, J. Derov, J.W. Stewart, A.J. Drehman, C. Junqueira and A.S.B. Sombra, Microw. Opt. Technol. Lett., 50, 2852 (2008); https://doi.org/10.1002/mop.23824
- S. Verma and S. Ravi, J. Mater. Sci. Mater. Electron., 34, 1011 (2023); https://doi.org/10.1007/s10854-023-10451-5
- C. Holzmann, A. Ullrich, O.-T. Ciubotariu and M. Albrecht, ACS Appl. Nano Mater., 5, 1023 (2022); https://doi.org/10.1021/acsanm.1c03687
- F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini and M. Bettinelli, J. Phys. Chem. B, 110, 6561 (2006); https://doi.org/10.1021/jp055713o
- R. Krsmanovic, V.A. Morozov, O.I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli and G.V. Tendeloo, Nanotechnology, 18, 325604 (2007); https://doi.org/10.1088/0957-4484/18/32/325604
- C.A. Cortés-Escobedo, A.M. Bolarín-Miró, F.S.-D. Jesús, R. Valenzuela, E.P. Juárez-Camacho, I.L. Samperio-Gómez and S. Ammar, Adv. Mater. Phys. Chem., 03, 41 (2013); https://doi.org/10.4236/ampc.2013.31A006
- D. Rodic, Z. Tomkowicz, L. Novakovic, A. Szytula and M.L. Napijalo, Solid State Commun., 73, 243 (1990); https://doi.org/10.1016/0038-1098(90)90966-F
- Sh.M. Aliev, I.K. Kamilov, M.Sh. Aliev and Zh.G. Ibaev, Phys. Solid State, 56, 1114 (2014); https://doi.org/10.1134/S106378341406002X
- A.B. Cahaya, A. Azhar, D. Djuhana and M.A. Majidi, Phys. Lett. A, 437, 128085 (2022); https://doi.org/10.1016/j.physleta.2022.128085
- Y.R. Uhm, J.C. Lim, S.M. Choi and C.S. Kim, J. Magn., 21, 303 (2016); https://doi.org/10.4283/JMAG.2016.21.3.303
- P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavín and A.S.B. Sombra, IET Microw. Antennas Propag., 3, 1191 (2009); https://doi.org/10.1049/iet-map.2008.0301
- A. Sharma, S.K. Godara and A.K. Srivastava, Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 96, 4173 (2022); https://doi.org/10.1007/s12648-022-02365-5
- F.N. Shafiee, R.S. Azis, I. Ismail, R. Nazlan, I.R. Ibrahim and A.S.A. Rahim, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 268, 287 (2017); https://doi.org/10.4028/www.scientific.net/SSP.268.287
- P. Hansen, K. Witter and W. Tolksdorf, Phys. Rev. B Condens. Matter, 27, 4375 (1983); https://doi.org/10.1103/PhysRevB.27.4375
- Q.I. Mohaidat, M. Lataifeh, S.H. Mahmood, I. Bsoul and M. Awawdeh, J. Supercond. Nov. Magn., 30, 2135 (2017); https://doi.org/10.1007/s10948-017-4003-y
- D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh and T.D. Hien, J. Magn. Magn. Mater., 332, 180 (2013); https://doi.org/10.1016/j.jmmm.2012.12.031
- M. Pianassola, M. Loveday, J.W. McMurray, M. Koschan, C.L. Melcher and M. Zhuravleva, J. Am. Ceram. Soc., 103, 2908 (2020); https://doi.org/10.1111/jace.16971
- Y.-P. Fu, C.-C. Chang, C.-H. Lin and T.-S. Chin, Ceram. Int., 30, 41 (2004); https://doi.org/10.1016/S0272-8842(03)00059-2
- R.D. McMichael, J.J. Ritter and R.D. Shull, J. Appl. Phys., 73, 6946 (1993); https://doi.org/10.1063/1.352443
- A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, pp. 86-748 (2004).
- J.E. Weidenborner, Acta Crystallogr., 14, 1051 (1961); https://doi.org/10.1107/S0365110X6100303X
- C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria and V.G. Harris, J. Appl. Phys., 107, 09A512 (2010); https://doi.org/10.1063/1.3357326
- R. Pauthenet, J. Appl. Phys., 29, 253 (1958); https://doi.org/10.1063/1.1723094
- C. Cascales, M.T. Fernández Díaz and M.A. Monge, Chem. Mater., 12, 3369 (2000); https://doi.org/10.1021/cm0011209
- J. Jensen and A.R. Mackintosh, Rare Earth Magnetism, Structures and Excitations, Clarendon Press: Oxford (1991).
- J. Sultana, J. Mohapatra, J.P. Liu and S.R. Mishra, AIP Adv., 13, 025252 (2023); https://doi.org/10.1063/9.0000519
- C. Li, Y. Qiu, G.O. Barasa and S. Yuan, Ceram. Int., 46, 18758 (2020); https://doi.org/10.1016/j.ceramint.2020.04.191
- Aakansha, and S. Ravi, Mater. Res. Express, 6, 126113 (2020); https://doi.org/10.1088/2053-1591/ab62e7
- W. Dunhui, T. Shaolong, H. Songling, Z. Jianrong and D. Youwei, J. Magn. Magn. Mater., 268, 70 (2004); https://doi.org/10.1016/S0304-8853(03)00474-8
- V. Franco, J.S. Blázquez and A. Conde, Appl. Phys. Lett., 89, 222512 (2006); https://doi.org/10.1063/1.2399361
- Q.Y. Dong, H.W. Zhang, J.R. Sun, B.G. Shen and V. Franco, J. Appl. Phys., 103, 116101 (2008); https://doi.org/10.1063/1.2913166
- V. Franco, A. Conde, J.M. Romero-Enrique, Y.I. Spichkin, V.I. Zverev and A.M. Tishin, J. Appl. Phys., 106, 103911 (2009); https://doi.org/10.1063/1.3261843
References
M.I.A.A. Maksoud, R.A. Fahim, A.E. Shalan, M.A. Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour and D.W. Rooney, Environ. Chem. Lett., 19, 375 (2021); https://doi.org/10.1007/s10311-020-01075-w
B. Monfared and B. Palm, Int. J. Refrig., 96, 25 (2018); https://doi.org/10.1016/j.ijrefrig.2018.08.012
V.I. Nizhankovskiy, J. Alloys Compd., 852, 156938 (2021); https://doi.org/10.1016/J.JALLCOM.2020.156938
Z.T. Karipbayev, K. Kumarbekov, I. Manika, A. Dauletbekova, A.L. Kozlovskiy, D. Sugak, S.B. Ubizskii, A. Akilbekov, Y. Suchikova and A.I. Popov, Phys. Status Solidi., C Curr. Top. Solid State Phys., 259, 2100415 (2022); https://doi.org/10.1002/pssb.202100415
S.I. El Dek and R.M. Amin, Radiat. Phys. Chem., 204, 110709 (2023); https://doi.org/10.1016/j.radphyschem.2022.110709
P.B.A. Fechine, R.S.T. Moretzsohn, R.C.S. Costa, J. Derov, J.W. Stewart, A.J. Drehman, C. Junqueira and A.S.B. Sombra, Microw. Opt. Technol. Lett., 50, 2852 (2008); https://doi.org/10.1002/mop.23824
S. Verma and S. Ravi, J. Mater. Sci. Mater. Electron., 34, 1011 (2023); https://doi.org/10.1007/s10854-023-10451-5
C. Holzmann, A. Ullrich, O.-T. Ciubotariu and M. Albrecht, ACS Appl. Nano Mater., 5, 1023 (2022); https://doi.org/10.1021/acsanm.1c03687
F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini and M. Bettinelli, J. Phys. Chem. B, 110, 6561 (2006); https://doi.org/10.1021/jp055713o
R. Krsmanovic, V.A. Morozov, O.I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli and G.V. Tendeloo, Nanotechnology, 18, 325604 (2007); https://doi.org/10.1088/0957-4484/18/32/325604
C.A. Cortés-Escobedo, A.M. Bolarín-Miró, F.S.-D. Jesús, R. Valenzuela, E.P. Juárez-Camacho, I.L. Samperio-Gómez and S. Ammar, Adv. Mater. Phys. Chem., 03, 41 (2013); https://doi.org/10.4236/ampc.2013.31A006
D. Rodic, Z. Tomkowicz, L. Novakovic, A. Szytula and M.L. Napijalo, Solid State Commun., 73, 243 (1990); https://doi.org/10.1016/0038-1098(90)90966-F
Sh.M. Aliev, I.K. Kamilov, M.Sh. Aliev and Zh.G. Ibaev, Phys. Solid State, 56, 1114 (2014); https://doi.org/10.1134/S106378341406002X
A.B. Cahaya, A. Azhar, D. Djuhana and M.A. Majidi, Phys. Lett. A, 437, 128085 (2022); https://doi.org/10.1016/j.physleta.2022.128085
Y.R. Uhm, J.C. Lim, S.M. Choi and C.S. Kim, J. Magn., 21, 303 (2016); https://doi.org/10.4283/JMAG.2016.21.3.303
P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavín and A.S.B. Sombra, IET Microw. Antennas Propag., 3, 1191 (2009); https://doi.org/10.1049/iet-map.2008.0301
A. Sharma, S.K. Godara and A.K. Srivastava, Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 96, 4173 (2022); https://doi.org/10.1007/s12648-022-02365-5
F.N. Shafiee, R.S. Azis, I. Ismail, R. Nazlan, I.R. Ibrahim and A.S.A. Rahim, Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 268, 287 (2017); https://doi.org/10.4028/www.scientific.net/SSP.268.287
P. Hansen, K. Witter and W. Tolksdorf, Phys. Rev. B Condens. Matter, 27, 4375 (1983); https://doi.org/10.1103/PhysRevB.27.4375
Q.I. Mohaidat, M. Lataifeh, S.H. Mahmood, I. Bsoul and M. Awawdeh, J. Supercond. Nov. Magn., 30, 2135 (2017); https://doi.org/10.1007/s10948-017-4003-y
D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh and T.D. Hien, J. Magn. Magn. Mater., 332, 180 (2013); https://doi.org/10.1016/j.jmmm.2012.12.031
M. Pianassola, M. Loveday, J.W. McMurray, M. Koschan, C.L. Melcher and M. Zhuravleva, J. Am. Ceram. Soc., 103, 2908 (2020); https://doi.org/10.1111/jace.16971
Y.-P. Fu, C.-C. Chang, C.-H. Lin and T.-S. Chin, Ceram. Int., 30, 41 (2004); https://doi.org/10.1016/S0272-8842(03)00059-2
R.D. McMichael, J.J. Ritter and R.D. Shull, J. Appl. Phys., 73, 6946 (1993); https://doi.org/10.1063/1.352443
A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, pp. 86-748 (2004).
J.E. Weidenborner, Acta Crystallogr., 14, 1051 (1961); https://doi.org/10.1107/S0365110X6100303X
C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria and V.G. Harris, J. Appl. Phys., 107, 09A512 (2010); https://doi.org/10.1063/1.3357326
R. Pauthenet, J. Appl. Phys., 29, 253 (1958); https://doi.org/10.1063/1.1723094
C. Cascales, M.T. Fernández Díaz and M.A. Monge, Chem. Mater., 12, 3369 (2000); https://doi.org/10.1021/cm0011209
J. Jensen and A.R. Mackintosh, Rare Earth Magnetism, Structures and Excitations, Clarendon Press: Oxford (1991).
J. Sultana, J. Mohapatra, J.P. Liu and S.R. Mishra, AIP Adv., 13, 025252 (2023); https://doi.org/10.1063/9.0000519
C. Li, Y. Qiu, G.O. Barasa and S. Yuan, Ceram. Int., 46, 18758 (2020); https://doi.org/10.1016/j.ceramint.2020.04.191
Aakansha, and S. Ravi, Mater. Res. Express, 6, 126113 (2020); https://doi.org/10.1088/2053-1591/ab62e7
W. Dunhui, T. Shaolong, H. Songling, Z. Jianrong and D. Youwei, J. Magn. Magn. Mater., 268, 70 (2004); https://doi.org/10.1016/S0304-8853(03)00474-8
V. Franco, J.S. Blázquez and A. Conde, Appl. Phys. Lett., 89, 222512 (2006); https://doi.org/10.1063/1.2399361
Q.Y. Dong, H.W. Zhang, J.R. Sun, B.G. Shen and V. Franco, J. Appl. Phys., 103, 116101 (2008); https://doi.org/10.1063/1.2913166
V. Franco, A. Conde, J.M. Romero-Enrique, Y.I. Spichkin, V.I. Zverev and A.M. Tishin, J. Appl. Phys., 106, 103911 (2009); https://doi.org/10.1063/1.3261843