Copyright (c) 2024 Madhu Verma Hema, Dr.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural Characterization and Optical Properties of BiFeO3 Nanoparticles Synthesized by Propylene Glycol-Gel Route
Corresponding Author(s) : Simant Kumar Srivastav
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
This work focuses on the synthesis of phase-pure rhombohedral (R3c) nanocrystalline BiFeO3. The BiFeO3 nanoparticles were synthesized using the sol-gel method with propylene glycol as the complexing agent. The formation mechanism was investigated through thermal analysis and IR spectroscopy. The phase purity, crystal structure and nanocrystalline properties were studied using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The elemental composition and bonding states were analyzed with X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra confirmed the formation of pure and well-crystallized BiFeO3 nanoparticles at 400 ºC. The optical band gap, determined by UV-visible spectroscopy, was found to be 2.08 eV, indicating that the synthesized BiFeO3 nanoparticles could be an effective photocatalyst in the visible light region.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor and S. Adham, Sep. Purif. Technol., 228, 115719 (2019); https://doi.org/10.1016/j.seppur.2019.115719
- A.M. Awad, R. Jalab, A. Benamor, M.S. Nasser, M.M. Ba-Abbad, M. El-Naas and A.W. Mohammad, J. Mol. Liq., 301, 112335 (2020); https://doi.org/10.1016/j.molliq.2019.112335
- H. Lu, J. Wang, M. Stoller, T. Wang, Y. Bao and H. Hao, Adv. Mater. Sci. Eng., 2016, 4964828 (2016); https://doi.org/10.1155/2016/4964828
- Z. Li, G. Wang, K. Zhai, C. He, Q. Li and P. Guo, Colloids Surf. A Physicochem. Eng. Asp., 538, 28 (2018); https://doi.org/10.1016/j.colsurfa.2017.10.046
- H. Shirzadi and A. Nezamzadeh-Ejhieh, J. Mol. Liq., 230, 221 (2017); https://doi.org/10.1016/j.molliq.2017.01.029
- K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44(12R), 8269 (2005); https://doi.org/10.1143/JJAP.44.8269
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D.W. Bahnemann, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892
- K. Qi, B. Cheng, J. Yu and W. Ho, J. Alloys Compd., 727, 792 (2017); https://doi.org/10.1016/j.jallcom.2017.08.142
- Y. Lv, J. Lin, S. Peng, L. Zhang and L. Yu, New J. Chem., 43, 19223 (2019); https://doi.org/10.1039/C9NJ04767K
- G.-J. Lee and J.J. Wu, Powder Technol., 318, 8 (2017); https://doi.org/10.1016/j.powtec.2017.05.022
- J.-C. Sin, S.-M. Lam, A.R. Mohamed and K.-T. Lee, Int. J. Photoenergy, 2012, 185159 (2012); https://doi.org/10.1155/2012/185159
- M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S.S. Al-Deyab and Y. Lai, J. Mater. Chem. A Mater. Energy Sustain., 4, 6772 (2016); https://doi.org/10.1039/C5TA09323F
- L. Yin and W. Mi, Nanoscale, 12, 477 (2020); https://doi.org/10.1039/C9NR08800H
- S. Irfan, Z. Zhuanghao, F. Li, Y.-X. Chen, G.-X. Liang, J.-T. Luo and F. Ping, J. Mater. Res. Technol., 8, 6375 (2019); https://doi.org/10.1016/j.jmrt.2019.10.004
- M. Pooladi, I. Sharifi and M. Behzadipour, Ceram. Int., 46, 18453 (2020); https://doi.org/10.1016/j.ceramint.2020.04.241
- S.-M. Lam, J.-C. Sin and A.R. Mohamed, Mater. Res. Bull., 90, 15 (2017); https://doi.org/10.1016/j.materresbull.2016.12.052
- A. Haruna, I. Abdulkadir and S.O. Idris, Heliyon, 6, e03237 (2020); https://doi.org/10.1016/j.heliyon.2020.e03237
- Z. Nazeer, I. Bibi, F. Majid, S. Kamal, N. Alwadai, M.I. Arshad, A. Ali, S. Nouren, M. Al Huwayz and M. Iqbal, ACS Omega, 9, 545 (2024); https://doi.org/10.1021/acsomega.3c06132
- C. Ponraj, C. Krishnamoorthi, G. Vinitha, N. Manikandan, P. Santhosh kumar and J. Daniel, ChemistrySelect, 8, e202301180 (2023); https://doi.org/10.1002/slct.202301180
- C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson and W.J. James, Solid State Commun., 7, 701 (1969); https://doi.org/10.1016/0038-1098(69)90597-3
- P. Fischer, M. Polomska, I. Sosnowska and M. Szymanksi, J. Phys. Chem., 13, 1931 (1980); https://doi.org/10.1088/0022-3719/13/10/012
- W. Eerenstein, N. Mathur and J. Scott, Nature, 442, 759 (2006); https://doi.org/10.1038/nature05023
- G. Catalan and J.F. Scott, Adv. Mater., 21, 2463 (2009); https://doi.org/10.1002/adma.200802849
- R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S. Clark, J. Robertson, S. Redfern, G. Catalan and J. Scott, Phys. Rev. B Condens. Matter Mater. Phys., 77, 014110 (2008); https://doi.org/10.1103/PhysRevB.77.014110
- J. Silva, A. Reyes, H. Esparza, H. Camacho and L. Fuentes, Integr. Ferroelectr., 126, 47 (2011); https://doi.org/10.1080/10584587.2011.574986
- Q. Zhang, D. Sando and V. Nagarajan, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 4092 (2016); https://doi.org/10.1039/C6TC00243A
- T. Liu, Y. Xu and J. Zhao, J. Am. Ceram. Soc., 93, 3637 (2010); https://doi.org/10.1111/j.1551-2916.2010.03945.x
- T. Liu, Y. Xu, S. Feng and J. Zhao, J. Am. Ceram. Soc., 94, 3060 (2011); https://doi.org/10.1111/j.1551-2916.2011.04536.x
- S.-Z. Lu and X. Qi, J. Am. Ceram. Soc., 97, 2185 (2014); https://doi.org/10.1111/jace.12960
- S. Ghosh, S. Dasgupta, A. Sen and H.S. Maiti, J. Am. Ceram. Soc., 88, 1349 (2005); https://doi.org/10.1111/j.1551-2916.2005.00306.x
- S.M. Selbach, M.-A. Einarsrud, T. Tybell and T. Grande, J. Am. Ceram. Soc., 90, 3430 (2007); https://doi.org/10.1111/j.1551-2916.2007.01937.x
- Q.-H. Jiang, C.-W. Nan and Z.-J. Shen, J. Am. Ceram. Soc., 89, 2123 (2006); https://doi.org/10.1111/j.1551-2916.2006.01062.x
- M. Popa, D. Crespo, J. Calderon-Moreno, S. Preda and V. Fruth, J. Am. Ceram. Soc., 90, 2723 (2007); https://doi.org/10.1111/j.1551-2916.2007.01779.x
- J. Wei and D. Xue, Mater. Res. Bull., 43, 3368 (2008); https://doi.org/10.1016/j.materresbull.2008.02.009
- S.K. Srivastav and N.S. Gajbhiye, J. Am. Ceram. Soc., 95, 3678 (2012); https://doi.org/10.1111/j.1551-2916.2012.05411.x
- J.K. Kim, S.S. Kim and W.-J. Kim, Mater. Lett., 59, 4006 (2005); https://doi.org/10.1016/j.matlet.2005.07.050
- A.C. Tas, P. Majewski and F. Aldinger, J. Am. Ceram. Soc., 83, 2954 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
- M. Stoia, P. Barvinschi, L.B. Tudoran, M. Barbu and M. Stefanescu, J. Therm. Anal. Calorim., 108, 1033 (2011); https://doi.org/10.1007/s10973-011-1903-0
- R. Prasad, A. Sulaxna and A. Kumar, J. Therm. Anal. Calorim., 81, 441 (2005); https://doi.org/10.1007/s10973-005-0804-5
- V. Zelenik, Z. Vargovi and K. Györyovi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 262 (2007); https://doi.org/10.1016/j.saa.2006.02.050
- G.V.S. Rao, C.N.R. Rao and J.R. Ferraro, Appl. Spectrosc., 24, 436 (1970); https://doi.org/10.1366/000370270774371426
- B.D. Cullity, Elements of X-ray Diffractions, Addision-Wesley, USA, (1978).
- S.K. Srivastav, N.S. Gajbhiye and A. Banerjee, J. Appl. Phys., 113, 203917 (2013); https://doi.org/10.1063/1.4807928
- K. Wandelt, Surf. Sci. Rep., 2, 1 (1982); https://doi.org/10.1016/0167-5729(82)90003-6
- X. Zhu, Q. Hang, Z. Xing, Y. Yang, J. Zhu, Z. Liu, N. Ming, P. Zhou, Y. Song, Z. Li, T. Yu and Z. Zou, J. Am. Ceram. Soc., 94, 2688 (2011); https://doi.org/10.1111/j.1551-2916.2011.04430.x
- R. Haumont, J. Kreisel, P. Bouvier and F. Hippert, Phys. Rev. B Condens. Matter Mater. Phys., 73, 132101 (2006); https://doi.org/10.1103/PhysRevB.73.132101
- H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi and M. Miyayama, J. Magn. Magn. Mater., 310, e367 (2007); https://doi.org/10.1016/j.jmmm.2006.10.282
- M.K. Singh, H.M. Jang, S. Ryu and M.-H. Jo, Appl. Phys. Lett., 88, 042907 (2006); https://doi.org/10.1063/1.2168038
- G.L. Yuan, S.W. Or and H.L.W. Chan, J. Appl. Phys., 101, 064101 (2007); https://doi.org/10.1063/1.2433709
- J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, B Basic Res., 15, 627 (1966); https://doi.org/10.1002/pssb.19660150224
- H.P. Nguyen, G. Gyawali, Y.H. Jo, T.-H. Kim and S.W. Lee, Res. Chem. Intermed., 43, 5113 (2017); https://doi.org/10.1007/s11164-017-3047-8
- W. Ben Taazayet, I. Mallek Zouari, P. Gemeiner, B. Dkhil and N. Thabet Mliki, Rapid Res. Letts., 16, 2200081 (2022); https://doi.org/10.1002/pssr.202200081
- M. Othman, I. Mallek-Zouari, H. Akrout and N.T. Mliki, Ceram. Int., 49, 10580 (2023); https://doi.org/10.1016/j.ceramint.2022.11.245
References
A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor and S. Adham, Sep. Purif. Technol., 228, 115719 (2019); https://doi.org/10.1016/j.seppur.2019.115719
A.M. Awad, R. Jalab, A. Benamor, M.S. Nasser, M.M. Ba-Abbad, M. El-Naas and A.W. Mohammad, J. Mol. Liq., 301, 112335 (2020); https://doi.org/10.1016/j.molliq.2019.112335
H. Lu, J. Wang, M. Stoller, T. Wang, Y. Bao and H. Hao, Adv. Mater. Sci. Eng., 2016, 4964828 (2016); https://doi.org/10.1155/2016/4964828
Z. Li, G. Wang, K. Zhai, C. He, Q. Li and P. Guo, Colloids Surf. A Physicochem. Eng. Asp., 538, 28 (2018); https://doi.org/10.1016/j.colsurfa.2017.10.046
H. Shirzadi and A. Nezamzadeh-Ejhieh, J. Mol. Liq., 230, 221 (2017); https://doi.org/10.1016/j.molliq.2017.01.029
K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44(12R), 8269 (2005); https://doi.org/10.1143/JJAP.44.8269
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D.W. Bahnemann, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892
K. Qi, B. Cheng, J. Yu and W. Ho, J. Alloys Compd., 727, 792 (2017); https://doi.org/10.1016/j.jallcom.2017.08.142
Y. Lv, J. Lin, S. Peng, L. Zhang and L. Yu, New J. Chem., 43, 19223 (2019); https://doi.org/10.1039/C9NJ04767K
G.-J. Lee and J.J. Wu, Powder Technol., 318, 8 (2017); https://doi.org/10.1016/j.powtec.2017.05.022
J.-C. Sin, S.-M. Lam, A.R. Mohamed and K.-T. Lee, Int. J. Photoenergy, 2012, 185159 (2012); https://doi.org/10.1155/2012/185159
M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S.S. Al-Deyab and Y. Lai, J. Mater. Chem. A Mater. Energy Sustain., 4, 6772 (2016); https://doi.org/10.1039/C5TA09323F
L. Yin and W. Mi, Nanoscale, 12, 477 (2020); https://doi.org/10.1039/C9NR08800H
S. Irfan, Z. Zhuanghao, F. Li, Y.-X. Chen, G.-X. Liang, J.-T. Luo and F. Ping, J. Mater. Res. Technol., 8, 6375 (2019); https://doi.org/10.1016/j.jmrt.2019.10.004
M. Pooladi, I. Sharifi and M. Behzadipour, Ceram. Int., 46, 18453 (2020); https://doi.org/10.1016/j.ceramint.2020.04.241
S.-M. Lam, J.-C. Sin and A.R. Mohamed, Mater. Res. Bull., 90, 15 (2017); https://doi.org/10.1016/j.materresbull.2016.12.052
A. Haruna, I. Abdulkadir and S.O. Idris, Heliyon, 6, e03237 (2020); https://doi.org/10.1016/j.heliyon.2020.e03237
Z. Nazeer, I. Bibi, F. Majid, S. Kamal, N. Alwadai, M.I. Arshad, A. Ali, S. Nouren, M. Al Huwayz and M. Iqbal, ACS Omega, 9, 545 (2024); https://doi.org/10.1021/acsomega.3c06132
C. Ponraj, C. Krishnamoorthi, G. Vinitha, N. Manikandan, P. Santhosh kumar and J. Daniel, ChemistrySelect, 8, e202301180 (2023); https://doi.org/10.1002/slct.202301180
C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson and W.J. James, Solid State Commun., 7, 701 (1969); https://doi.org/10.1016/0038-1098(69)90597-3
P. Fischer, M. Polomska, I. Sosnowska and M. Szymanksi, J. Phys. Chem., 13, 1931 (1980); https://doi.org/10.1088/0022-3719/13/10/012
W. Eerenstein, N. Mathur and J. Scott, Nature, 442, 759 (2006); https://doi.org/10.1038/nature05023
G. Catalan and J.F. Scott, Adv. Mater., 21, 2463 (2009); https://doi.org/10.1002/adma.200802849
R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S. Clark, J. Robertson, S. Redfern, G. Catalan and J. Scott, Phys. Rev. B Condens. Matter Mater. Phys., 77, 014110 (2008); https://doi.org/10.1103/PhysRevB.77.014110
J. Silva, A. Reyes, H. Esparza, H. Camacho and L. Fuentes, Integr. Ferroelectr., 126, 47 (2011); https://doi.org/10.1080/10584587.2011.574986
Q. Zhang, D. Sando and V. Nagarajan, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 4092 (2016); https://doi.org/10.1039/C6TC00243A
T. Liu, Y. Xu and J. Zhao, J. Am. Ceram. Soc., 93, 3637 (2010); https://doi.org/10.1111/j.1551-2916.2010.03945.x
T. Liu, Y. Xu, S. Feng and J. Zhao, J. Am. Ceram. Soc., 94, 3060 (2011); https://doi.org/10.1111/j.1551-2916.2011.04536.x
S.-Z. Lu and X. Qi, J. Am. Ceram. Soc., 97, 2185 (2014); https://doi.org/10.1111/jace.12960
S. Ghosh, S. Dasgupta, A. Sen and H.S. Maiti, J. Am. Ceram. Soc., 88, 1349 (2005); https://doi.org/10.1111/j.1551-2916.2005.00306.x
S.M. Selbach, M.-A. Einarsrud, T. Tybell and T. Grande, J. Am. Ceram. Soc., 90, 3430 (2007); https://doi.org/10.1111/j.1551-2916.2007.01937.x
Q.-H. Jiang, C.-W. Nan and Z.-J. Shen, J. Am. Ceram. Soc., 89, 2123 (2006); https://doi.org/10.1111/j.1551-2916.2006.01062.x
M. Popa, D. Crespo, J. Calderon-Moreno, S. Preda and V. Fruth, J. Am. Ceram. Soc., 90, 2723 (2007); https://doi.org/10.1111/j.1551-2916.2007.01779.x
J. Wei and D. Xue, Mater. Res. Bull., 43, 3368 (2008); https://doi.org/10.1016/j.materresbull.2008.02.009
S.K. Srivastav and N.S. Gajbhiye, J. Am. Ceram. Soc., 95, 3678 (2012); https://doi.org/10.1111/j.1551-2916.2012.05411.x
J.K. Kim, S.S. Kim and W.-J. Kim, Mater. Lett., 59, 4006 (2005); https://doi.org/10.1016/j.matlet.2005.07.050
A.C. Tas, P. Majewski and F. Aldinger, J. Am. Ceram. Soc., 83, 2954 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
M. Stoia, P. Barvinschi, L.B. Tudoran, M. Barbu and M. Stefanescu, J. Therm. Anal. Calorim., 108, 1033 (2011); https://doi.org/10.1007/s10973-011-1903-0
R. Prasad, A. Sulaxna and A. Kumar, J. Therm. Anal. Calorim., 81, 441 (2005); https://doi.org/10.1007/s10973-005-0804-5
V. Zelenik, Z. Vargovi and K. Györyovi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 262 (2007); https://doi.org/10.1016/j.saa.2006.02.050
G.V.S. Rao, C.N.R. Rao and J.R. Ferraro, Appl. Spectrosc., 24, 436 (1970); https://doi.org/10.1366/000370270774371426
B.D. Cullity, Elements of X-ray Diffractions, Addision-Wesley, USA, (1978).
S.K. Srivastav, N.S. Gajbhiye and A. Banerjee, J. Appl. Phys., 113, 203917 (2013); https://doi.org/10.1063/1.4807928
K. Wandelt, Surf. Sci. Rep., 2, 1 (1982); https://doi.org/10.1016/0167-5729(82)90003-6
X. Zhu, Q. Hang, Z. Xing, Y. Yang, J. Zhu, Z. Liu, N. Ming, P. Zhou, Y. Song, Z. Li, T. Yu and Z. Zou, J. Am. Ceram. Soc., 94, 2688 (2011); https://doi.org/10.1111/j.1551-2916.2011.04430.x
R. Haumont, J. Kreisel, P. Bouvier and F. Hippert, Phys. Rev. B Condens. Matter Mater. Phys., 73, 132101 (2006); https://doi.org/10.1103/PhysRevB.73.132101
H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi and M. Miyayama, J. Magn. Magn. Mater., 310, e367 (2007); https://doi.org/10.1016/j.jmmm.2006.10.282
M.K. Singh, H.M. Jang, S. Ryu and M.-H. Jo, Appl. Phys. Lett., 88, 042907 (2006); https://doi.org/10.1063/1.2168038
G.L. Yuan, S.W. Or and H.L.W. Chan, J. Appl. Phys., 101, 064101 (2007); https://doi.org/10.1063/1.2433709
J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, B Basic Res., 15, 627 (1966); https://doi.org/10.1002/pssb.19660150224
H.P. Nguyen, G. Gyawali, Y.H. Jo, T.-H. Kim and S.W. Lee, Res. Chem. Intermed., 43, 5113 (2017); https://doi.org/10.1007/s11164-017-3047-8
W. Ben Taazayet, I. Mallek Zouari, P. Gemeiner, B. Dkhil and N. Thabet Mliki, Rapid Res. Letts., 16, 2200081 (2022); https://doi.org/10.1002/pssr.202200081
M. Othman, I. Mallek-Zouari, H. Akrout and N.T. Mliki, Ceram. Int., 49, 10580 (2023); https://doi.org/10.1016/j.ceramint.2022.11.245