Copyright (c) 2024 Yadagiri Bhongiri, Sundarpal Vudutha, Srinu J, Sailaja Guntuka, Shashikanth B, Kiran kumar V, Manohar B, Someshwar P, Rajitha Nampally
This work is licensed under a Creative Commons Attribution 4.0 International License.
Charge Transfer Interaction Dynamics between 2-Methyl-8-hydroxyquinoline and 2,4-Dinitrophenol: Synthesis, Spectroscopic Characterization, DNA Binding and DFT Studies
Corresponding Author(s) : B. Yadagiri
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
A novel charge transfer (CT) complex was formed by combining the electron-acceptor 2,4-dinitrophenol (DNP) with the electron-donor 2-methyl-8-hydroxyquinoline (MHQ). The complex obtained was further characterized using both experimental and theoretical methods. The Benesi-Hildebrand equation can be utilized to determine various spectroscopic physical measurements such as the molar absorptivity (εCT) and formation constant (KCT). The CT complex has a stoichiometry of 1:1. Multiple spectroscopic methods were employed to investigate the resultant solid compound. The existence of charge and proton transfer in the resultant complex was confirmed by FT-IR, 1H NMR, SEM-EDX and powder-XRD studies. An electron absorption spectroscopy examination was done to analyze the complex DNA binding capability. The resulting complex was determined to have an intercalative binding mechanism, with an intrinsic binding constant (Kb) value of 4.2 × 106 M-1. The experimental results were corroborated by performing theoretical calculations using DFT using a CAM-B3LYP/6-31G(d,p) basis set. The geometrical parameters, electrostatic potential maps (MEPs) and Mullikan charges were computed and examined in agreement with the experimental observations. In addition to electron transmission, the stability of the complex is influenced by the presence of a hydrogen bond.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.S. Mulliken, J. Am. Chem. Soc., 74, 811 (1952); https://doi.org/10.1021/ja01123a067
- P.H. Emslie, R. Foster, I. Horman, J.W. Morris and D.R. Twiselton, J. Chem. Soc. B, 1161 (1969); https://doi.org/10.1039/j29690001161
- K.M. Al-Ahmary, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 635 (2014); https://doi.org/10.1016/j.saa.2013.09.008
- V. Sundarpal, B.S. Kanth, N. Rajitha and B. Yadagiri, Results Chem., 5, 100694 (2023); https://doi.org/10.1016/j.rechem.2022.100694
- A. Mostafa, G.B. Cieslinski and H.S. Bazzi, J. Mol. Struct., 1081, 136 (2015); https://doi.org/10.1016/j.molstruc.2014.09.074
- H.S. Bazzi, A. Mostafa, S.Y. AlQaradawi and E.-M. Nour, J. Mol. Struct., 842, 1 (2007); https://doi.org/10.1016/j.molstruc.2006.12.005
- G. Meesala, A.H. Syeda, M. Varukolu and P. Tigulla, J. Indian Chem. Soc., 99, 100799 (2022); https://doi.org/10.1016/j.jics.2022.100799
- M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013
- G. Vadivelan, M. Saravanabhavan, V. Murugesan, G. Gohulvani, M. Sekar and B. Babu, Mol. Cryst. Liq. Cryst., 652, 242 (2017); https://doi.org/10.1080/15421406.2017.1378045
- V. Mahipal, N. Venkatesh, B. Naveen, G. Suresh, V. Manaiah and T. Parthasarathy, Chem. Data Coll., 28, 100474 (2020); https://doi.org/10.1016/j.cdc.2020.100474
- I.M. Khan, S. Shakya, M. Islam, S. Khan and H. Najnin, Phys. Chem. Liq., 59, 753 (2021); https://doi.org/10.1080/00319104.2020.1810250
- K.M. Al-Ahmary, S.M. Soliman, M.M. Habeeb and A.H. Al-Obidan, J. Mol. Struct., 1143, 31 (2017); https://doi.org/10.1016/j.molstruc.2017.04.077
- B. Mennucci, 2, 386 (2012); https://doi.org/10.1002/wcms.1086
- R. Kobayashi and R.D. Amos, Chem. Phys. Lett., 420, 106 (2006); https://doi.org/10.1016/j.cplett.2005.12.040
- Z.-L. Cai, M.J. Crossley, J.R. Reimers, R. Kobayashi and R.D. Amos, J. Phys. Chem. B, 110, 15624 (2006); https://doi.org/10.1021/jp063376t
- M. Varukolu, M. Kumar, P. Venkatesh, G. Manaiah, V. Parthasarathy, N. Suresh and P. Tigulla, ACS Omega, 7, 810 (2022); https://doi.org/10.1021/acsomega.1c05464
- A. Weyesa and E. Mulugeta, RSC Adv., 10, 20784 (2020); https://doi.org/10.1039/D0RA03763J
- P. Manojkumar, Harilal, V. Mahipal, G. Suresh, N. Venkatesh, M. Ramesh and T. Parthasarathy, RSC Adv., 11, 39994 (2021); https://doi.org/10.1039/D1RA07658B
- K.M. Al-Ahmary, M.M. Habeeb and E.A. Al-Solmy, Phys. Chem. Liquids, 51, 131 (2013); https://doi.org/10.1080/00319104.2012.695072
- M. Varukolu, M. Palnati, V. Nampally, S. Gangadhari, M. Vadluri and P. Tigulla, ACS Omega, 7, 810 (2022); https://doi.org/10.1021/acsomega.1c05464
- A. Tomberg, Gaussian 09W Tutorial, an Introduction to Computational Chemistry Using G09W and Avogadro Software, pp. 1-34 (2013).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, M. Ishida, J. Hasegawa, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, T. Keith, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, J. Tomasi, S.S. Iyengar, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2016).
- K.M. Al-Ahmary, M.M. Habeeb and A.H. Al-Obidan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 196, 247 (2018); https://doi.org/10.1016/j.saa.2018.02.025
- K.M. Al-Ahmary, M.M. Habeeb and E.A. Al-Solmy, J. Mol. Liq., 162, 129 (2011); https://doi.org/10.1016/j.molliq.2011.06.015
- R.M. Alghanmi, S.M. Soliman, M.T. Basha and M.M. Habeeb, J. Mol. Liq., 256, 433 (2018); https://doi.org/10.1016/j.molliq.2018.02.056
- H.A. Benesi and J. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030
- G. Briegleb, Angew. Chem., 76, 326 (1964); https://doi.org/10.1002/ange.19640760804
- A.M.A. Adam, M. Salman, T. Sharshar and M.S. Refat, Int. J. Electrochem. Sci., 8, 1274 (2013); https://doi.org/10.1016/S1452-3981(23)14097-1
- G. Briegleb, Elektronen Donator-Acceptor Komplexe, Springer-Verlag, Berlin (1961).
- M. Gaber and S.S. Al-Shihry, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 526 (2005); https://doi.org/10.1016/j.saa.2005.02.005
- V. Nampally, M.K. Palnati, N. Baindla, M. Varukolu, S. Gangadhari and P. Tigulla, ACS Omega, 7, 16689 (2022); https://doi.org/10.1021/acsomega.2c01177
References
R.S. Mulliken, J. Am. Chem. Soc., 74, 811 (1952); https://doi.org/10.1021/ja01123a067
P.H. Emslie, R. Foster, I. Horman, J.W. Morris and D.R. Twiselton, J. Chem. Soc. B, 1161 (1969); https://doi.org/10.1039/j29690001161
K.M. Al-Ahmary, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 635 (2014); https://doi.org/10.1016/j.saa.2013.09.008
V. Sundarpal, B.S. Kanth, N. Rajitha and B. Yadagiri, Results Chem., 5, 100694 (2023); https://doi.org/10.1016/j.rechem.2022.100694
A. Mostafa, G.B. Cieslinski and H.S. Bazzi, J. Mol. Struct., 1081, 136 (2015); https://doi.org/10.1016/j.molstruc.2014.09.074
H.S. Bazzi, A. Mostafa, S.Y. AlQaradawi and E.-M. Nour, J. Mol. Struct., 842, 1 (2007); https://doi.org/10.1016/j.molstruc.2006.12.005
G. Meesala, A.H. Syeda, M. Varukolu and P. Tigulla, J. Indian Chem. Soc., 99, 100799 (2022); https://doi.org/10.1016/j.jics.2022.100799
M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013
G. Vadivelan, M. Saravanabhavan, V. Murugesan, G. Gohulvani, M. Sekar and B. Babu, Mol. Cryst. Liq. Cryst., 652, 242 (2017); https://doi.org/10.1080/15421406.2017.1378045
V. Mahipal, N. Venkatesh, B. Naveen, G. Suresh, V. Manaiah and T. Parthasarathy, Chem. Data Coll., 28, 100474 (2020); https://doi.org/10.1016/j.cdc.2020.100474
I.M. Khan, S. Shakya, M. Islam, S. Khan and H. Najnin, Phys. Chem. Liq., 59, 753 (2021); https://doi.org/10.1080/00319104.2020.1810250
K.M. Al-Ahmary, S.M. Soliman, M.M. Habeeb and A.H. Al-Obidan, J. Mol. Struct., 1143, 31 (2017); https://doi.org/10.1016/j.molstruc.2017.04.077
B. Mennucci, 2, 386 (2012); https://doi.org/10.1002/wcms.1086
R. Kobayashi and R.D. Amos, Chem. Phys. Lett., 420, 106 (2006); https://doi.org/10.1016/j.cplett.2005.12.040
Z.-L. Cai, M.J. Crossley, J.R. Reimers, R. Kobayashi and R.D. Amos, J. Phys. Chem. B, 110, 15624 (2006); https://doi.org/10.1021/jp063376t
M. Varukolu, M. Kumar, P. Venkatesh, G. Manaiah, V. Parthasarathy, N. Suresh and P. Tigulla, ACS Omega, 7, 810 (2022); https://doi.org/10.1021/acsomega.1c05464
A. Weyesa and E. Mulugeta, RSC Adv., 10, 20784 (2020); https://doi.org/10.1039/D0RA03763J
P. Manojkumar, Harilal, V. Mahipal, G. Suresh, N. Venkatesh, M. Ramesh and T. Parthasarathy, RSC Adv., 11, 39994 (2021); https://doi.org/10.1039/D1RA07658B
K.M. Al-Ahmary, M.M. Habeeb and E.A. Al-Solmy, Phys. Chem. Liquids, 51, 131 (2013); https://doi.org/10.1080/00319104.2012.695072
M. Varukolu, M. Palnati, V. Nampally, S. Gangadhari, M. Vadluri and P. Tigulla, ACS Omega, 7, 810 (2022); https://doi.org/10.1021/acsomega.1c05464
A. Tomberg, Gaussian 09W Tutorial, an Introduction to Computational Chemistry Using G09W and Avogadro Software, pp. 1-34 (2013).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, M. Ishida, J. Hasegawa, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, T. Keith, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, J. Tomasi, S.S. Iyengar, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2016).
K.M. Al-Ahmary, M.M. Habeeb and A.H. Al-Obidan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 196, 247 (2018); https://doi.org/10.1016/j.saa.2018.02.025
K.M. Al-Ahmary, M.M. Habeeb and E.A. Al-Solmy, J. Mol. Liq., 162, 129 (2011); https://doi.org/10.1016/j.molliq.2011.06.015
R.M. Alghanmi, S.M. Soliman, M.T. Basha and M.M. Habeeb, J. Mol. Liq., 256, 433 (2018); https://doi.org/10.1016/j.molliq.2018.02.056
H.A. Benesi and J. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030
G. Briegleb, Angew. Chem., 76, 326 (1964); https://doi.org/10.1002/ange.19640760804
A.M.A. Adam, M. Salman, T. Sharshar and M.S. Refat, Int. J. Electrochem. Sci., 8, 1274 (2013); https://doi.org/10.1016/S1452-3981(23)14097-1
G. Briegleb, Elektronen Donator-Acceptor Komplexe, Springer-Verlag, Berlin (1961).
M. Gaber and S.S. Al-Shihry, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 526 (2005); https://doi.org/10.1016/j.saa.2005.02.005
V. Nampally, M.K. Palnati, N. Baindla, M. Varukolu, S. Gangadhari and P. Tigulla, ACS Omega, 7, 16689 (2022); https://doi.org/10.1021/acsomega.2c01177