Copyright (c) 2024 SURESH BADIPATI, HIMA BINDU GANDAM, RAJ KIRAN BATHULA, YAGATI VAMSI KUMAR
This work is licensed under a Creative Commons Attribution 4.0 International License.
CdSe Quantum Dots Sensitized K2Ti8O17 Photoanode for Efficient Photoelectrochemical Water Splitting
Corresponding Author(s) : Hima Bindu Gandam
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
Structured potassium titanate (K2Ti8O17, KTO) was synthesized by simple hydrothermal route and CdSe quantum dots (QDs) was synthesized by hot injection method. Further, CdSe QDs were sensitized or modified over synthesized KTO nanorods. The synthesized KTO and CdSe KTO nanorods were subjected to various characterizations techniques such as XRD, FESEM, TEM, UV-visible and FTIR analysis to confirm the particles and its behaviour. The KTO and CdSe KTO electrodes were prepared and investigated as photoanodes in photoelectrochemical water splitting. Photoelectrochemical water splitting action of KTO and CdSe KTO compounds was analyzed in 1 M Na2S electrolyte. The CdSe KTO photoanode demonstrated advanced photoelectrochemical water splitting activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. USA, 103, 15729 (2006); https://doi.org/10.1073/pnas.0603395103
- V.G. Garcia, G.J. Inacio, L.F. Filho, L.T. Pacheco, F.N.N. Pansini, M.G. Menezes and W.S. Paz, FlatChem, 48, 100753 (2024); https://doi.org/10.1016/j.flatc.2024.100753
- K. Maeda, J. Photochem. Photobiol. Photochem. Rev., 12, 237 (2011); https://doi.org/10.1016/j.jphotochemrev.2011.07.001
- M. Gratzel, Nature, 414, 338 (2001); https://doi.org/10.1038/35104607
- L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001); https://doi.org/10.1038/35104634
- A.M. Ali, M.A. Sayed, H. Algarni, V. Ganesh, M. Aslam, A.A. Ismail and H.M. El-Bery, Catalysts, 11, 1062 (2021); https://doi.org/10.3390/catal11091062
- J. Liu, W. Chen, Q. Sun, Y. Zhang, X. Li, J. Wang, C. Wang, Y. Yu, L. Wang and X. Yu, ACS Appl. Energy Mater., 4, 2864 (2021); https://doi.org/10.1021/acsaem.1c00145
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
- H. Ma, Y. Jia, G. Zhu, F. Zhang, S. Rhee, B. Lee and C. Liu, Appl. Surf. Sci., 507, 144885 (2020); https://doi.org/10.1016/j.apsusc.2019.144885
- Y. Moriya, T. Takata and K. Domen, Coord. Chem. Rev., 257, 1957 (2013); https://doi.org/10.1016/j.ccr.2013.01.021
- K.-X. Li, C.-H. Li, H.-Y. Shi, R. Chen, A.-S. She, Y. Yang, X. Jiang, Y.-X. Chen and C.-Z. Lu, Molecules, 29, 2514 (2024); https://doi.org/10.3390/molecules29112514
- N. Buehler, K. Meier and J.F. Reber, J. Phys. Chem., 88, 3261 (1984); https://doi.org/10.1021/j150659a025
- A. Bard and M. Fox, Acc. Chem. Res., 28, 141 (1995); https://doi.org/10.1021/ar00051a007
- Y.-T. Yin, C.-L. Yang, X.-H. Li, Y.-L. Liu and W.-K. Zhao, Appl. Surf. Sci., 654, 159440 (2024); https://doi.org/10.1016/j.apsusc.2024.159440
- S. Marchesini, F. Schmithusen, M. Tegze, G. Faigel, Y. Calvayrac, M. Belakhovsky, J. Chevrier and A.S. Simionovici, Phys. Rev. Lett., 85, 4723 (2000); https://doi.org/10.1103/PhysRevLett.85.4723
- S. Chaguetmi, F. Mammeri, S. Nowak, P. Decorse, H. Lecoq, M. Gaceur, J. Ben Naceur, S. Achour, R. Chtourou and S. Ammar, RSC Adv., 3, 2572 (2013); https://doi.org/10.1039/c2ra21684a
- L. Jiang, L. Gao, Y. Xue, W. Ren, X. Shai, T. Wei, C. Zeng and H. Wang, Int. J. Hydrogen Ener., 58, 1316 (2024); https://doi.org/10.1016/j.ijhydene.2024.01.315
- H. Wang, W. Zhu, B. Chong and K. Qin, Int. J. Hydrogen Energy, 39, 90 (2014); https://doi.org/10.1016/j.ijhydene.2013.10.048
- C. Prasad, N. Madkhali, J.S. Won, J.E. Lee, S. Sangaraju and H.Y. Choi, Mater. Sci. Eng. B, 292, 116413 (2023); https://doi.org/10.1016/j.mseb.2023.116413
- R.R. Devarapalli, C.K. Kamaja and M.V. Shelke, J. Mater. Chem. A Mater. Energy Sustain., 2, 13352 (2014); https://doi.org/10.1039/C4TA02775B
- G. Sreedhar, A. Sivanantham, S. Venkateshwaran, S.K. Panda and M. Eashwar, J. Mater. Chem. A Mater. Energy Sustain., 3, 13476 (2015); https://doi.org/10.1039/C5TA00304K
- Z.B. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner and H.N. Dinh, J. Mater. Res., 25, 3 (2010); https://doi.org/10.1557/JMR.2010.0020
- J.-H. Park, D.-H. Lee, H.-S. Shin and B.-K. Lee, J. Am. Ceram. Soc., 79, 1130 (1996); https://doi.org/10.1111/j.1151-2916.1996.tb08562.x
- J.M. Longo and J.A. Kafalas, J. Solid State Chem., 1, 103 (1969); https://doi.org/10.1016/0022-4596(69)90015-2
- R.E. Schaak and T.E. Mallouk, J. Am. Chem. Soc., 122, 2798 (2000); https://doi.org/10.1021/ja993306i
References
N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. USA, 103, 15729 (2006); https://doi.org/10.1073/pnas.0603395103
V.G. Garcia, G.J. Inacio, L.F. Filho, L.T. Pacheco, F.N.N. Pansini, M.G. Menezes and W.S. Paz, FlatChem, 48, 100753 (2024); https://doi.org/10.1016/j.flatc.2024.100753
K. Maeda, J. Photochem. Photobiol. Photochem. Rev., 12, 237 (2011); https://doi.org/10.1016/j.jphotochemrev.2011.07.001
M. Gratzel, Nature, 414, 338 (2001); https://doi.org/10.1038/35104607
L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001); https://doi.org/10.1038/35104634
A.M. Ali, M.A. Sayed, H. Algarni, V. Ganesh, M. Aslam, A.A. Ismail and H.M. El-Bery, Catalysts, 11, 1062 (2021); https://doi.org/10.3390/catal11091062
J. Liu, W. Chen, Q. Sun, Y. Zhang, X. Li, J. Wang, C. Wang, Y. Yu, L. Wang and X. Yu, ACS Appl. Energy Mater., 4, 2864 (2021); https://doi.org/10.1021/acsaem.1c00145
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
H. Ma, Y. Jia, G. Zhu, F. Zhang, S. Rhee, B. Lee and C. Liu, Appl. Surf. Sci., 507, 144885 (2020); https://doi.org/10.1016/j.apsusc.2019.144885
Y. Moriya, T. Takata and K. Domen, Coord. Chem. Rev., 257, 1957 (2013); https://doi.org/10.1016/j.ccr.2013.01.021
K.-X. Li, C.-H. Li, H.-Y. Shi, R. Chen, A.-S. She, Y. Yang, X. Jiang, Y.-X. Chen and C.-Z. Lu, Molecules, 29, 2514 (2024); https://doi.org/10.3390/molecules29112514
N. Buehler, K. Meier and J.F. Reber, J. Phys. Chem., 88, 3261 (1984); https://doi.org/10.1021/j150659a025
A. Bard and M. Fox, Acc. Chem. Res., 28, 141 (1995); https://doi.org/10.1021/ar00051a007
Y.-T. Yin, C.-L. Yang, X.-H. Li, Y.-L. Liu and W.-K. Zhao, Appl. Surf. Sci., 654, 159440 (2024); https://doi.org/10.1016/j.apsusc.2024.159440
S. Marchesini, F. Schmithusen, M. Tegze, G. Faigel, Y. Calvayrac, M. Belakhovsky, J. Chevrier and A.S. Simionovici, Phys. Rev. Lett., 85, 4723 (2000); https://doi.org/10.1103/PhysRevLett.85.4723
S. Chaguetmi, F. Mammeri, S. Nowak, P. Decorse, H. Lecoq, M. Gaceur, J. Ben Naceur, S. Achour, R. Chtourou and S. Ammar, RSC Adv., 3, 2572 (2013); https://doi.org/10.1039/c2ra21684a
L. Jiang, L. Gao, Y. Xue, W. Ren, X. Shai, T. Wei, C. Zeng and H. Wang, Int. J. Hydrogen Ener., 58, 1316 (2024); https://doi.org/10.1016/j.ijhydene.2024.01.315
H. Wang, W. Zhu, B. Chong and K. Qin, Int. J. Hydrogen Energy, 39, 90 (2014); https://doi.org/10.1016/j.ijhydene.2013.10.048
C. Prasad, N. Madkhali, J.S. Won, J.E. Lee, S. Sangaraju and H.Y. Choi, Mater. Sci. Eng. B, 292, 116413 (2023); https://doi.org/10.1016/j.mseb.2023.116413
R.R. Devarapalli, C.K. Kamaja and M.V. Shelke, J. Mater. Chem. A Mater. Energy Sustain., 2, 13352 (2014); https://doi.org/10.1039/C4TA02775B
G. Sreedhar, A. Sivanantham, S. Venkateshwaran, S.K. Panda and M. Eashwar, J. Mater. Chem. A Mater. Energy Sustain., 3, 13476 (2015); https://doi.org/10.1039/C5TA00304K
Z.B. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner and H.N. Dinh, J. Mater. Res., 25, 3 (2010); https://doi.org/10.1557/JMR.2010.0020
J.-H. Park, D.-H. Lee, H.-S. Shin and B.-K. Lee, J. Am. Ceram. Soc., 79, 1130 (1996); https://doi.org/10.1111/j.1151-2916.1996.tb08562.x
J.M. Longo and J.A. Kafalas, J. Solid State Chem., 1, 103 (1969); https://doi.org/10.1016/0022-4596(69)90015-2
R.E. Schaak and T.E. Mallouk, J. Am. Chem. Soc., 122, 2798 (2000); https://doi.org/10.1021/ja993306i