Copyright (c) 2024 Vitthal T. Borkar, R. R. Sangpal, B.B. Bahule, Snehal S. Latpate, Varsha Marathe
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rapid Iodination Kinetic Studies of o-Toluidine in Aqueous Medium: A Pharmacokinetic Insight from QSAR and Molecular Docking of its Iodo Product with Cytochrome P450
Corresponding Author(s) : Vitthal T. Borkar
Asian Journal of Chemistry,
Vol. 36 No. 10 (2024): Vol 36 Issue 10, 2024
Abstract
The kinetic data of uncatalyzed rapid iodination of o-toluidine using molecular iodine in aqueous medium was investigated by employing hydrodynamic voltammetry (HV) technique. The frequency factor, activation energy and entropy change accompanying the reaction were evaluated. The reaction followed second order kinetics that had a half-life of 90 s and specific reaction rate 888.87 M s–1 at 22.1 ºC. The iodo product was formed via the green route in the aqueous solvent. The physico-chemical characteristics, lipophilicity, water solubility and pharmacokinetic parameters were derived by QSAR analysis. The docking of the iodo product with cytochrome P450 exhibited steric and physiological complementarity of the ligand-protein interface through hydrogen bonding and pi-pi stacking interactions, indicating that the product exhibited metabolic activity was similar to the existing drugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.S. Rao, S.I. Mali and V.T. Dangat, Tetrahedron, 34, 205 (1978); https://doi.org/10.1016/S0040-4020(01)93605-1
- V.T. Borkar, S.L. Bonde and V.T. Dangat, Int. J. Chem. Kinet., 45, 693 (2013); https://doi.org/10.1002/kin.20801
- E.C. Reichert, K. Feng, A.C. Sather and S.L. Buchwald, J. Am. Chem. Soc., 145, 3323 (2023); https://doi.org/10.1021/jacs.2c13520
- J. Struwe, L. Ackermann and F. Gallou, Chem Catal., 3, 100485 (2023); https://doi.org/10.1016/j.checat.2022.12.002
- B. Duvvuru, D. Amankulova, S. Gauden, T. Haffemayer and D.L.J. Clive, Tetrahedron, 133, 133264 (2023); https://doi.org/10.1016/j.tet.2023.133264
- M.K. Al-Joumhawy, J.-C. Chang, F. Sabzi and D. Gabel, Molecules, 28, 3245 (2023); https://doi.org/10.3390/molecules28073245
- C.E. Reimann, K.E. Kim, A.W. Rand, F.A. Moghadam and B.M. Stoltz, Tetrahedron, 130, 133176 (2023); https://doi.org/10.1016/j.tet.2022.133176
- A. Suzuki, Chem. Commun., 4759 (2005); https://doi.org/10.1039/b507375h
- J.M. Schomaker and T.J. Delia, J. Org. Chem., 66, 7125 (2001); https://doi.org/10.1021/jo010573+
- K. Heremans, J. Snauwaert and J. Rijkenberg, Rev. Sci. Instrum., 51, 806 (1980); https://doi.org/10.1063/1.1136295
- J.F. Eccleston, S.R. Martin and M.J. Schilstra, Methods Cell Biol., 84, 445 (2008); https://doi.org/10.1016/S0091-679X(07)84015-5
- K. Orito, T. Hatakeyama, M. Takeo and H. Suginome, Synthesis, 1273 (1995); https://doi.org/10.1055/s-1995-4089
- S.S. Chobe and S.G. Konda, J. Adv. Sci. Res., 11, 137 (2020).
- N. Narender, K.S.K. Reddy, K.V.V.K. Mohan and S.J. Kulkarni, Tetrahedron Lett., 48, 6124 (2007); https://doi.org/10.1016/j.tetlet.2007.06.138
- L. Lista, A. Pezzella, A. Napolitano and M. d’Ischia, Tetrahedron, 64, 234 (2008); https://doi.org/10.1016/j.tet.2007.10.062
- K.R. Reddy, M. Venkateshwar, C. Uma Maheswari and P. Santhosh Kumar, Tetrahedron Lett., 51, 2170 (2010); https://doi.org/10.1016/j.tetlet.2010.02.074
- J. Quintin and G. Lewin, Tetrahedron Lett., 45, 3635 (2004); https://doi.org/10.1016/j.tetlet.2004.03.038
- R. Sathiyapriya and R.J. Karunakaran, Synth. Commun., 36, 1915 (2006); https://doi.org/10.1080/00397910600602750
- L. Emmanuvel, R.K. Shukla, A. Sudalai, S. Gurunath and S. Sivaram, Tetrahedron Lett., 47, 4793 (2006); https://doi.org/10.1016/j.tetlet.2006.05.062
- S. Zangade and P. Patil, Results Chem., 3, 100176 (2021); https://doi.org/10.1016/j.rechem.2021.100176
- N.A. DarFarhad, G.M. Peerzada, N.B. Ganaie and S. Rashid, ChemistrySelect, 2, 11293 (2017); https://doi.org/10.1002/slct.201701856
- V.T. Borkar, Int. J. Chem. Kinet., 53, 1193 (2021); https://doi.org/10.1002/kin.21525
- V.T. Borkar, J. Chem. Educ., 98, 2959 (2021); https://doi.org/10.1021/acs.jchemed.1c00185
- P.D. Maske, V.T. Borkar and S.S. Latpate, Russ. J. Gen. Chem., 93, 429 (2023); https://doi.org/10.1134/S1070363223020263
- I. Lengyel, I.R. Epstein and K. Kustin, Inorg. Chem., 32, 5880 (1993); https://doi.org/10.1021/ic00077a036
- J.H. Espenson, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, edn. 2, p. 156 (1995).
- Z. Cai, M. Zafferani, O.M. Akande and A.E. Hargrove, J. Med. Chem., 65, 7262 (2022); https://doi.org/10.1021/acs.jmedchem.2c00254
- J. Wang and K. Chou, Curr. Drug Metab., 11, 342 (2010); https://doi.org/10.2174/138920010791514180
References
T.S. Rao, S.I. Mali and V.T. Dangat, Tetrahedron, 34, 205 (1978); https://doi.org/10.1016/S0040-4020(01)93605-1
V.T. Borkar, S.L. Bonde and V.T. Dangat, Int. J. Chem. Kinet., 45, 693 (2013); https://doi.org/10.1002/kin.20801
E.C. Reichert, K. Feng, A.C. Sather and S.L. Buchwald, J. Am. Chem. Soc., 145, 3323 (2023); https://doi.org/10.1021/jacs.2c13520
J. Struwe, L. Ackermann and F. Gallou, Chem Catal., 3, 100485 (2023); https://doi.org/10.1016/j.checat.2022.12.002
B. Duvvuru, D. Amankulova, S. Gauden, T. Haffemayer and D.L.J. Clive, Tetrahedron, 133, 133264 (2023); https://doi.org/10.1016/j.tet.2023.133264
M.K. Al-Joumhawy, J.-C. Chang, F. Sabzi and D. Gabel, Molecules, 28, 3245 (2023); https://doi.org/10.3390/molecules28073245
C.E. Reimann, K.E. Kim, A.W. Rand, F.A. Moghadam and B.M. Stoltz, Tetrahedron, 130, 133176 (2023); https://doi.org/10.1016/j.tet.2022.133176
A. Suzuki, Chem. Commun., 4759 (2005); https://doi.org/10.1039/b507375h
J.M. Schomaker and T.J. Delia, J. Org. Chem., 66, 7125 (2001); https://doi.org/10.1021/jo010573+
K. Heremans, J. Snauwaert and J. Rijkenberg, Rev. Sci. Instrum., 51, 806 (1980); https://doi.org/10.1063/1.1136295
J.F. Eccleston, S.R. Martin and M.J. Schilstra, Methods Cell Biol., 84, 445 (2008); https://doi.org/10.1016/S0091-679X(07)84015-5
K. Orito, T. Hatakeyama, M. Takeo and H. Suginome, Synthesis, 1273 (1995); https://doi.org/10.1055/s-1995-4089
S.S. Chobe and S.G. Konda, J. Adv. Sci. Res., 11, 137 (2020).
N. Narender, K.S.K. Reddy, K.V.V.K. Mohan and S.J. Kulkarni, Tetrahedron Lett., 48, 6124 (2007); https://doi.org/10.1016/j.tetlet.2007.06.138
L. Lista, A. Pezzella, A. Napolitano and M. d’Ischia, Tetrahedron, 64, 234 (2008); https://doi.org/10.1016/j.tet.2007.10.062
K.R. Reddy, M. Venkateshwar, C. Uma Maheswari and P. Santhosh Kumar, Tetrahedron Lett., 51, 2170 (2010); https://doi.org/10.1016/j.tetlet.2010.02.074
J. Quintin and G. Lewin, Tetrahedron Lett., 45, 3635 (2004); https://doi.org/10.1016/j.tetlet.2004.03.038
R. Sathiyapriya and R.J. Karunakaran, Synth. Commun., 36, 1915 (2006); https://doi.org/10.1080/00397910600602750
L. Emmanuvel, R.K. Shukla, A. Sudalai, S. Gurunath and S. Sivaram, Tetrahedron Lett., 47, 4793 (2006); https://doi.org/10.1016/j.tetlet.2006.05.062
S. Zangade and P. Patil, Results Chem., 3, 100176 (2021); https://doi.org/10.1016/j.rechem.2021.100176
N.A. DarFarhad, G.M. Peerzada, N.B. Ganaie and S. Rashid, ChemistrySelect, 2, 11293 (2017); https://doi.org/10.1002/slct.201701856
V.T. Borkar, Int. J. Chem. Kinet., 53, 1193 (2021); https://doi.org/10.1002/kin.21525
V.T. Borkar, J. Chem. Educ., 98, 2959 (2021); https://doi.org/10.1021/acs.jchemed.1c00185
P.D. Maske, V.T. Borkar and S.S. Latpate, Russ. J. Gen. Chem., 93, 429 (2023); https://doi.org/10.1134/S1070363223020263
I. Lengyel, I.R. Epstein and K. Kustin, Inorg. Chem., 32, 5880 (1993); https://doi.org/10.1021/ic00077a036
J.H. Espenson, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, edn. 2, p. 156 (1995).
Z. Cai, M. Zafferani, O.M. Akande and A.E. Hargrove, J. Med. Chem., 65, 7262 (2022); https://doi.org/10.1021/acs.jmedchem.2c00254
J. Wang and K. Chou, Curr. Drug Metab., 11, 342 (2010); https://doi.org/10.2174/138920010791514180