Copyright (c) 2024 Haribabu, Latha, Lavanya G, Rekha, Sudhakar K, Suresh R, Ansar Ali Z, Sudha P N
This work is licensed under a Creative Commons Attribution 4.0 International License.
Phytoextraction of Heavy Metals: Assessing the Potential of Brassica juncea in Heavy Metals (Copper and Cadmium) from Contaminated Soils
Corresponding Author(s) : P.N. Sudha
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
This study investigated the phytoremediation potential of Brassica juncea in copper and cadmium contaminated soils. B. juncea, a fast-growing, high-biomass-producing plant, has been shown to tolerate and accumulate heavy metals. This study aimed to assess the effectiveness of B. juncea in removing copper and cadmium from contaminated soils and to evaluate the morphophysiological and biochemical responses of the plant to metal stress. Soil samples with varying concentrations of copper and cadmium were prepared and B. juncea was grown in these soils under controlled conditions. Plant growth parameters, metal accumulation in plant tissues and biochemical stress markers were analyzed. The results showed the potential use of B. juncea for the phytoremediation of copper and cadmium contaminated soils. The presence of heavy metals had a direct effect on the biochemical parameters, growth performance, and the antioxidant enzymes of the plant. At the same time, the plant seemed to tolerate the metal stress and accumulate, which helped in the extraction of metals from soils. The current study contributes to the development of sustainable strategies for the remediation of the metal-polluted sites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Bhunia, J. Hazard. Toxic Radioact. Waste, 21, 02017001 (2017); https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000366
- F. Belaïd, Energy J., 45, 125 (2024); https://doi.org/10.5547/01956574.45.1.fbel
- X. Zhang, L. Yan, J. Liu, Z. Zhang and C. Tan, Appl. Sci., 9, 4213 (2019); https://doi.org/10.3390/app9204213
- A. Alengebawy, S.T. Abdelkhalek, S.R. Qureshi and M.Q. Wang, Toxics, 9, 42 (2021); https://doi.org/10.3390/toxics9030042
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
- M. Shahid, C. Dumat, S. Khalid and N.K. Niazi and P.M.C. Antunes, Rev. Environ. Contam. Toxicol., 241, 73 (2017); https://doi.org/10.1007/398_2016_8
- F. Nazir, Q. Fariduddin, A. Hussain and T.A. Khan, Ecotoxicol. Environ. Saf., 207, 111081 (2021); https://doi.org/10.1016/j.ecoenv.2020.111081
- R.A. Wuana and F.E. Okieimen, Int. Sch. Res. Notices, 2011, 402647 (2011); https://doi.org/10.5402/2011/402647
- V. Kumar, A. Sharma, P. Kaur, G.P. Singh Sidhu, A.S. Bali, R. Bhardwaj, A.K. Thukral and A. Cerda, Chemosphere, 216, 449 (2019); https://doi.org/10.1016/j.chemosphere.2018.10.066
- W.L. Huang, F.L. Wu, H.Y. Huang, W.T. Huang, C.L. Deng, L.T. Yang, Z.R. Huang and L.S. Chen, Plants, 9, 291 (2020); https://doi.org/10.3390/plants9030291
- M. Salifu, F. Aidoo, M.S. Hayford, D. Adomako and E. Asare, Appl. Water Sci., 7, 653 (2017); https://doi.org/10.1007/s13201-015-0277-z
- M. Sut-Lohmann, M. Grimm, F. Kästner, T. Raab, M. Heinrich and T. Fischer, Int. J. Environ. Res., 17, 38 (2023); https://doi.org/10.1007/s41742-023-00528-8
- V.D. Rajput, Harish, R.K. Singh, K.K. Verma, L. Sharma, F.R. Quiroz-Figueroa, M. Meena, V.S. Gour, T. Minkina, S. Sushkova and S. Mandzhieva, Biology, 10, 267 (2021); https://doi.org/10.3390/biology10040267
- S. Sadasivam and A. Manickam, Biochemical Methods for Agricultural Sciences, Wiley Eastern Limited. New Delhi (1992).
- M.S. Blosi, Nature, 181, 1199 (1958); https://doi.org/10.1038/1811199a0
- R.F. Beers Jr. and I.W. Sizer, J. Biol. Chem., 195, 133 (1952); https://doi.org/10.1016/S0021-9258(19)50881-X
- H.P. Misra and I. Fridovich, J. Biol. Chem., 247, 3170 (1972); https://doi.org/10.1016/S0021-9258(19)45228-9
- G.L. Ellman, Arch. Biochem. Biophys., 74, 443 (1958); https://doi.org/10.1016/0003-9861(58)90014-6
- R.P. Lopez, Am. J. Public Health, 99, 1603 (2009); https://doi.org/10.2105/AJPH.2008.150136
- A. Muscolo, O. Mariateresa, T. Giulio and R. Mariateresa, Int. J. Mol. Sci., 25, 3264 (2024); https://doi.org/10.3390/ijms25063264
- G.A. Bortoloti and D. Baron, Environ. Adv., 8, 100204 (2022); https://doi.org/10.1016/j.envadv.2022.100204
- Y. Samaras, R.A. Bressan, L.N. Csonka, M.G. Garcia-Rios, D. Paino and D. Rhodes, Environment and Plant Metabolism, Bios Scientific Publishers: Oxford, pp 161-187 (1995).
- S. Singh and S. Sinha, Ecotoxicol. Environ. Saf., 62, 118 (2005); https://doi.org/10.1016/j.ecoenv.2004.12.026
- R. John, P. Ahmad, K. Gadgil and S. Sharma, Arch. Agron. Soil Sci., 55, 395 (2009); https://doi.org/10.1080/03650340802552395
- K. Das and A. Roychoudhury, Front. Environ. Sci., 2, 53 (2014); https://doi.org/10.3389/fenvs.2014.00053
- S.A. Desouky, Alleviation the Toxicity Effect of Lead Acetate by Riboflavin on Growth Parameters, Photosynthesis, Respiration, Carbohydrates, Proteins, Free Amino Acids and Proline of Chlorella vulgaris Beijer Cultures, Al-Azhar Bullettin of Science, In Proceeding of the 5th International Science Conference, pp. 277-279 (2003).
- A.M. Chiorcea-Paquim, T.A. Enache, E. De Souza-Gil and A.M. Oliveira-Brett, Compr. Rev. Food Sci. Food Saf., 19, 1680 (2020); https://doi.org/10.1111/1541-4337.12566
- M.H. Saleem, S. Fahad, S.U. Khan, M. Din, A. Ullah, A.E. Sabagh, A. Hossain, A. Llanes and L. Liu, Environ. Sci. Pollut. Res. Int., 27, 5211 (2020); https://doi.org/10.1007/s11356-019-07264-7
- H. Yan, F. Filardo, X. Hu, X. Zhao and D. Fu, Environ. Sci. Pollut. Res. Int., 23, 3758 (2016); https://doi.org/10.1007/s11356-015-5640-y
- A. Michalak, Pol. J. Environ. Stud., 15, 523 (2006).
- N.A. Akram, F. Shafiq and M. Ashraf, Front. Plant Sci., 8, 613 (2017); https://doi.org/10.3389/fpls.2017.00613
- T. Ishikawa, J. Dowdle and N. Smirnoff, Physiol. Plant., 126, 343 (2006); https://doi.org/10.1111/j.1399-3054.2006.00640.x
- R. Kaur, P. Yadav, A.K. Thukral, A. Walia and R. Bhardwaj, Environ. Sci. Pollut. Res. Int., 24, 685 (2017); https://doi.org/10.1007/s11356-016-7864-x
- S.S. Rathore, K. Shekhawat, A. Dass, B.K. Kandpal and V.K. Singh, Proc. Natl. Acad. Sci., India, B Biol. Sci., 89, 419 (2019); https://doi.org/10.1007/s40011-017-0885-5
- J.K. Sharma, N. Kumar, N.P. Singh and A.R. Santal, Front. Plant Sci., 14, 1076876 (2023); https://doi.org/10.3389/fpls.2023.1076876
- L.A. Souza, L.S. Camargos and M.E.A. Carvalho, eds.: V. Matichenkov, Toxic Metal Phytoremdiation using High Biomass Non-Hyperaccumulator Crops: New Possibilities for Bioenergy Resources, In: Phytoremediation: Methods, Management and Assessment, Nova Publishers, Chap. 1, pp. 1-25 (2018).
References
P. Bhunia, J. Hazard. Toxic Radioact. Waste, 21, 02017001 (2017); https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000366
F. Belaïd, Energy J., 45, 125 (2024); https://doi.org/10.5547/01956574.45.1.fbel
X. Zhang, L. Yan, J. Liu, Z. Zhang and C. Tan, Appl. Sci., 9, 4213 (2019); https://doi.org/10.3390/app9204213
A. Alengebawy, S.T. Abdelkhalek, S.R. Qureshi and M.Q. Wang, Toxics, 9, 42 (2021); https://doi.org/10.3390/toxics9030042
M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
M. Shahid, C. Dumat, S. Khalid and N.K. Niazi and P.M.C. Antunes, Rev. Environ. Contam. Toxicol., 241, 73 (2017); https://doi.org/10.1007/398_2016_8
F. Nazir, Q. Fariduddin, A. Hussain and T.A. Khan, Ecotoxicol. Environ. Saf., 207, 111081 (2021); https://doi.org/10.1016/j.ecoenv.2020.111081
R.A. Wuana and F.E. Okieimen, Int. Sch. Res. Notices, 2011, 402647 (2011); https://doi.org/10.5402/2011/402647
V. Kumar, A. Sharma, P. Kaur, G.P. Singh Sidhu, A.S. Bali, R. Bhardwaj, A.K. Thukral and A. Cerda, Chemosphere, 216, 449 (2019); https://doi.org/10.1016/j.chemosphere.2018.10.066
W.L. Huang, F.L. Wu, H.Y. Huang, W.T. Huang, C.L. Deng, L.T. Yang, Z.R. Huang and L.S. Chen, Plants, 9, 291 (2020); https://doi.org/10.3390/plants9030291
M. Salifu, F. Aidoo, M.S. Hayford, D. Adomako and E. Asare, Appl. Water Sci., 7, 653 (2017); https://doi.org/10.1007/s13201-015-0277-z
M. Sut-Lohmann, M. Grimm, F. Kästner, T. Raab, M. Heinrich and T. Fischer, Int. J. Environ. Res., 17, 38 (2023); https://doi.org/10.1007/s41742-023-00528-8
V.D. Rajput, Harish, R.K. Singh, K.K. Verma, L. Sharma, F.R. Quiroz-Figueroa, M. Meena, V.S. Gour, T. Minkina, S. Sushkova and S. Mandzhieva, Biology, 10, 267 (2021); https://doi.org/10.3390/biology10040267
S. Sadasivam and A. Manickam, Biochemical Methods for Agricultural Sciences, Wiley Eastern Limited. New Delhi (1992).
M.S. Blosi, Nature, 181, 1199 (1958); https://doi.org/10.1038/1811199a0
R.F. Beers Jr. and I.W. Sizer, J. Biol. Chem., 195, 133 (1952); https://doi.org/10.1016/S0021-9258(19)50881-X
H.P. Misra and I. Fridovich, J. Biol. Chem., 247, 3170 (1972); https://doi.org/10.1016/S0021-9258(19)45228-9
G.L. Ellman, Arch. Biochem. Biophys., 74, 443 (1958); https://doi.org/10.1016/0003-9861(58)90014-6
R.P. Lopez, Am. J. Public Health, 99, 1603 (2009); https://doi.org/10.2105/AJPH.2008.150136
A. Muscolo, O. Mariateresa, T. Giulio and R. Mariateresa, Int. J. Mol. Sci., 25, 3264 (2024); https://doi.org/10.3390/ijms25063264
G.A. Bortoloti and D. Baron, Environ. Adv., 8, 100204 (2022); https://doi.org/10.1016/j.envadv.2022.100204
Y. Samaras, R.A. Bressan, L.N. Csonka, M.G. Garcia-Rios, D. Paino and D. Rhodes, Environment and Plant Metabolism, Bios Scientific Publishers: Oxford, pp 161-187 (1995).
S. Singh and S. Sinha, Ecotoxicol. Environ. Saf., 62, 118 (2005); https://doi.org/10.1016/j.ecoenv.2004.12.026
R. John, P. Ahmad, K. Gadgil and S. Sharma, Arch. Agron. Soil Sci., 55, 395 (2009); https://doi.org/10.1080/03650340802552395
K. Das and A. Roychoudhury, Front. Environ. Sci., 2, 53 (2014); https://doi.org/10.3389/fenvs.2014.00053
S.A. Desouky, Alleviation the Toxicity Effect of Lead Acetate by Riboflavin on Growth Parameters, Photosynthesis, Respiration, Carbohydrates, Proteins, Free Amino Acids and Proline of Chlorella vulgaris Beijer Cultures, Al-Azhar Bullettin of Science, In Proceeding of the 5th International Science Conference, pp. 277-279 (2003).
A.M. Chiorcea-Paquim, T.A. Enache, E. De Souza-Gil and A.M. Oliveira-Brett, Compr. Rev. Food Sci. Food Saf., 19, 1680 (2020); https://doi.org/10.1111/1541-4337.12566
M.H. Saleem, S. Fahad, S.U. Khan, M. Din, A. Ullah, A.E. Sabagh, A. Hossain, A. Llanes and L. Liu, Environ. Sci. Pollut. Res. Int., 27, 5211 (2020); https://doi.org/10.1007/s11356-019-07264-7
H. Yan, F. Filardo, X. Hu, X. Zhao and D. Fu, Environ. Sci. Pollut. Res. Int., 23, 3758 (2016); https://doi.org/10.1007/s11356-015-5640-y
A. Michalak, Pol. J. Environ. Stud., 15, 523 (2006).
N.A. Akram, F. Shafiq and M. Ashraf, Front. Plant Sci., 8, 613 (2017); https://doi.org/10.3389/fpls.2017.00613
T. Ishikawa, J. Dowdle and N. Smirnoff, Physiol. Plant., 126, 343 (2006); https://doi.org/10.1111/j.1399-3054.2006.00640.x
R. Kaur, P. Yadav, A.K. Thukral, A. Walia and R. Bhardwaj, Environ. Sci. Pollut. Res. Int., 24, 685 (2017); https://doi.org/10.1007/s11356-016-7864-x
S.S. Rathore, K. Shekhawat, A. Dass, B.K. Kandpal and V.K. Singh, Proc. Natl. Acad. Sci., India, B Biol. Sci., 89, 419 (2019); https://doi.org/10.1007/s40011-017-0885-5
J.K. Sharma, N. Kumar, N.P. Singh and A.R. Santal, Front. Plant Sci., 14, 1076876 (2023); https://doi.org/10.3389/fpls.2023.1076876
L.A. Souza, L.S. Camargos and M.E.A. Carvalho, eds.: V. Matichenkov, Toxic Metal Phytoremdiation using High Biomass Non-Hyperaccumulator Crops: New Possibilities for Bioenergy Resources, In: Phytoremediation: Methods, Management and Assessment, Nova Publishers, Chap. 1, pp. 1-25 (2018).