Copyright (c) 2024 Susmita Mandavgane, Ashwini Banginwar, Rani Meshram
This work is licensed under a Creative Commons Attribution 4.0 International License.
Role of Nanomaterials in Degradation of Cosmetics and Pharmaceutical Wastewater: A Review
Corresponding Author(s) : Susmita A. Mandavgane
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
Biodiversity progress impacts the quality and availability of renewable natural resources. Ecological concerns about air and water pollution have been raised on communal and commercial levels. The continuous release and accumulation of cosmetics and pharmaceutical items in the environment pose significant threats to both ecosystems and human health. The presence of these emerging pollutants from pharmaceutical and cosmetic products has been reported in wastewater streams coming from industrial as well as wastewater treatment plants. This need has driven the development of technologies like advanced oxidation processes such as ozonation, Fenton’s oxidation, photocatalysis, etc. for conventional wastewater treatments. Among these, the photocatalytic processes are presently being efficient since they not only utilize UV light but also visible light. This article mainly focuses on the review of preparation and comparative activity of photocatalysts on cosmetic as well as pharmaceutical wastes degradation. Photocatalysts, in their different forms like nanoparticles, nanorods and nanocomposites, hold great promise due to their stability, non-toxicity and reusability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Effendi, Procedia Environ. Sci., 33, 562 (2016); https://doi.org/10.1016/j.proenv.2016.03.108
- D.D. Kundu, D. Dutta, A. Joseph, A. Jana, P. Samanta, J.N. Bhakta and M.A. Alreshidi, Environ. Monit. Assess., 196, 180 (2024); https://doi.org/10.1007/s10661-024-12311-z
- V. Subhiksha, S. Kokilavani and S.S. Khan, Chemosphere, 290, 133228 (2022); https://doi.org/10.1016/j.chemosphere.2021.133228
- S. Zahmatkesh, A. Bokhari, M. Karimian, M.M.A. Zahra, M. Sillanpää, H. Panchal, A.J. Alrubaie and Y. Rezakhani, Environ. Monit. Assess., 194, 884 (2022); https://doi.org/10.1007/s10661-022-10503-z
- R. Kumar, M. Qureshi, D.K. Vishwakarma, N. Al-Ansari, A. Kuriqi, A. Elbeltagi and A. Saraswat, Case Stud. Chem. Environ. Eng., 6, 100219 (2022); https://doi.org/10.1016/j.cscee.2022.100219
- A.H. Navidpour, M.B. Ahmed and J.L. Zhou, Nanomaterials, 14, 135 (2024); https://doi.org/10.3390/nano14020135
- K. Nowak, E. Jabloñska and W. Ratajczak-Wrona, Environ. Res., 198, 110488 (2021); https://doi.org/10.1016/j.envres.2020.110488
- J.L. Liu and M.H. Wong, Environ. Int., 59, 208 (2013); https://doi.org/10.1016/j.envint.2013.06.012
- Q.C. Thuy, P.T. Phuong, T.L.T. Thien and B.Q. Minh, Vietnam J. Chem., 60, 738 (2022); https://doi.org/10.1002/vjch.202200016
- B. Díaz-Garduño, M.G. Pintado-Herrera, M. Biel-Maeso, J.J. Rueda-Márquez, P.A. Lara-Martín, J.A. Perales, M.A. Manzano, C. Garrido-Pérez and M.L. Martín-Díaz, Water Res., 119, 136 (2017); https://doi.org/10.1016/j.watres.2017.04.021
- B. Kasprzyk-Hordern, R.M. Dinsdale and A.J. Guwy, Water Res., 43, 363 (2009); https://doi.org/10.1016/j.watres.2008.10.047
- R.A. Trenholm, B.J. Vanderford, J.E. Drewes and S.A. Snyder, J. Chromatogr. A, 1190, 253 (2008); https://doi.org/10.1016/j.chroma.2008.02.032
- M. Bilal, S. Mehmood and H.M.N. Iqbal, Cosmetics, 7, 13 (2020); https://doi.org/10.3390/cosmetics7010013
- S. Mahapatra, K. Samal and R.R. Dash, J. Environ. Manage., 308, 114668 (2022); https://doi.org/10.1016/j.jenvman.2022.114668
- B.O. Orimolade, A.O. Idris, U. Feleni and B. Mamba, Environ. Pollut., 289, 117891 (2021); https://doi.org/10.1016/j.envpol.2021.117891
- S. Teixeira, R. Gurke, H. Eckert, K. Kühn, J. Fauler and G. Cuniberti, J. Environ. Chem. Eng., 4, 287 (2016); https://doi.org/10.1016/j.jece.2015.10.045
- K. Samal, S. Mahapatra and M. Hibzur Ali, Energy Nexus, 6, 100076 (2022); https://doi.org/10.1016/j.nexus.2022.100076
- J. Hollman, J.A. Dominic, G. Achari, C.H. Langford and J.-H. Tay, Environ. Technol., 41, 1107 (2020); https://doi.org/10.1080/09593330.2018.1521475
- A. Olasupo and F.B.M. Suah, J. Hazard. Mater., 406, 124317 (2021); https://doi.org/10.1016/j.jhazmat.2020.124317
- P.N. Karungamye, Appl. J. Environ. Eng. Sci., 10, 412 (2020); https://doi.org/10.48422/IMIST.PRSM/ajees-v6i4.23828
- J. Wang and R. Zhuan, Sci. Total Environ., 701, 135023 (2020); https://doi.org/10.1016/j.scitotenv.2019.135023
- K.S. Varma, R.J. Tayade, K.J. Shah, P.A. Joshi, A.D. Shukla and V.G. Gandhi, Water-Energy Nexus, 3, 46 (2020); https://doi.org/10.1016/j.wen.2020.03.008
- A.O. Oluwole, E.O. Omotola and O.S. Olatunji, BMC Chem., 14, 62 (2020); https://doi.org/10.1186/s13065-020-00714-1
- D.A. Gkika, A.C. Mitropoulos, D.A. Lambropoulou, I.K. Kalavrouziotis and G.Z. Kyzas, Environ. Sci. Pollut. Res. Int., 29, 75223 (2022); https://doi.org/10.1007/s11356-022-23045-1
- K.M. Yenkie, Curr. Opin. Chem. Eng., 26, 131 (2019); https://doi.org/10.1016/j.coche.2019.09.002
- T.K. Hussein and N.A. Jasim, Mater. Today Proc., 42, 1946 (2021); https://doi.org/10.1016/j.matpr.2020.12.240
- A. Piatkowska, M. Janus, K. Szymanski and S. Mozia, Catalysts, 11, 144 (2021); https://doi.org/10.3390/catal11010144
- P. Biswas and C.-Y. Wu, J. Air Waste Manag. Assoc., 55, 708 (2005); https://doi.org/10.1080/10473289.2005.10464656
- J.H. Won, J.H. Chung, D.J. Jang and Y.W. Kim, Appl. Phys. Lett., 84, 287 (2004); https://doi.org/10.1063/1.1639514
- R.A. de Jesus, G.C. de Assis, R.J. Oliveira, J.A.S. Costa, C.M.P. da Silva, H.M.N. Iqbal and L.F.R. Ferreira, Nano-Structures & Nano-Objects, 37, 101071 (2024); https://doi.org/10.1016/j.nanoso.2023.101071
- M. Vert, Y. Doi, K.H. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo and F. Schué, Pure Appl. Chem., 84, 377 (2012); https://doi.org/10.1351/PAC-REC-10-12-04
- J. Muthami, Graduate Dissertation, Spectrophotometric Characterization of Functionalized Silver Nanoparticles as a Defluoridation Sensor, University of Delaware, Newark, USA (2019).
- J.F. Banfield and H. Zhang, Rev. Mineral. Geochem., 44, 1 (2001); https://doi.org/10.2138/rmg.2001.44.01
- D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu and L. Yang, Chemosphere, 275, 130104 (2024); https://doi.org/10.1016/j.chemosphere.2021.130104
- M.A. Oturan and J.J. Aaron, Crit. Rev. Environ. Sci. Technol., 44, 2577 (2014); https://doi.org/10.1080/10643389.2013.829765
- S.A. Mandavgane, Mater. Today Proc., 29, 1213 (2020); https://doi.org/10.1016/j.matpr.2020.05.478
- B. Bethi, S.H. Sonawane, B.A. Bhanvase and S.P. Gumfekar, Chem. Eng. Process., 109, 178 (2016); https://doi.org/10.1016/j.cep.2016.08.016
- M.A. Al-Nuaim, A.A. Alwasiti and Z.Y. Shnain, Chem. Zvesti, 77, 677 (2023); https://doi.org/10.1007/s11696-022-02468-7
- U.E. Romman, I. Shakir, I.A. Shaaban, M.A. Assiri, K. Chaudhary, M.F. Warsi and M. Shahid, Opt. Mater., 147, 114678 (2024); https://doi.org/10.1016/j.optmat.2023.114678
- H. Yu, K. Zhang and C. Rossi, J. Photochem. Photobiol. Chem., 188, 65 (2007); https://doi.org/10.1016/j.jphotochem.2006.11.021
- S.M. Gupta and M. Tripathi, Chin. Sci. Bull., 56, 1639 (2011); https://doi.org/10.1007/s11434-011-4476-1
- M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee and M.H. Cho, J. Mater. Chem. A Mater. Energy Sustain., 2, 637 (2014); https://doi.org/10.1039/C3TA14052K
- M.N. Shabbir, R. Alabada, M. Aadil, Z. Ahmad, A.A. Alothman, N.A. Almuhous, W.A. Khan and R.M.K. Mohamed, Ceram. Int., 50, 4404 (2024); https://doi.org/10.1016/j.ceramint.2023.11.143
- Z. Malik, S.A. Ibrahim, A.R. Ainuddin, R. Hussin and Z. Kamdi, AIP Conf. Preceed., 2925, 020058 (2024); https://doi.org/10.1063/5.0183197
- Q. Gao, L. Sun, Z. Wang and J. Deng, Chin. Chem. Lett., 35, 109255 (2024); https://doi.org/10.1016/j.cclet.2023.109255
- M. Karuppiah and R. Rajmohan, Mater. Lett., 97, 141 (2013); https://doi.org/10.1016/j.matlet.2013.01.087
- N. Seman, Z.I. Tarmizi, R.R. Ali, S.H.M. Taib, M.S.N. Salleh, J.C. Zhe, S.M. Sukri, IOP Conf. Ser.: Earth Environ. Sci., 1091, 012064 (2022); https://doi.org/10.1088/1755-1315/1091/1/012064
- R. Yadav and R. Purwar, Polym. Test., 93, 106916 (2021); https://doi.org/10.1016/j.polymertesting.2020.106916
- B.K. Thakur, A. Kumar and D. Kumar, S. Afr. J. Bot., 124, 223 (2019); https://doi.org/10.1016/j.sajb.2019.05.024
- D.A.A. Fadeel, M.S. Hanafy, N.A. Kelany and M.A. Elywa, Heliyon, 7, e07370 (2021); https://doi.org/10.1016/j.heliyon.2021.e07370
- A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari and M. Atarod, J. Alloys Compd., 689, 15 (2016); https://doi.org/10.1016/j.jallcom.2016.07.253
- R. Sazonov, G. Kholodnaya, D. Ponomarev, M. Zhuravlev, I. Pyatkov, F. Konusov, O. Lapteva and R. Gadirov, Physica B, 619, 413208 (2021); https://doi.org/10.1016/j.physb.2021.413208
- M. Aslam, A.Z. Abdullah and M. Rafatullah, J. Ind. Eng. Chem., 98, 1 (2021); https://doi.org/10.1016/j.jiec.2021.04.010
- M. Aravind, M. Amalanathan and M.S.M. Mary, SN Appl. Sci., 3, 409 (2021); https://doi.org/10.1007/s42452-021-04281-5
- N. Chokesawatanakit, S. Phanthanawiboon, J.T.N. Knijnenburg, S. Theerakulpisut, S. Thammasang and K. Kamwilaisak, Int. J. Biol. Macromol., 256, 128321 (2024); https://doi.org/10.1016/j.ijbiomac.2023.128321
- M.K. Elizabeth, R.U. Devi, M. Parameshwar and A. Ratnamala, Asian J. Chem., 36, 1308 (2024); https://doi.org/10.14233/ajchem.2024.31421
- A.V. Nimmy, A. Mahesh and V.M. Anandakumar, J. Phys. Chem. Solids, 185, 111774 (2024); https://doi.org/10.1016/j.jpcs.2023.111774
- A. Ashok, R. Jeba Beula, R. Magesh, G. Unnikrishnan, P.M. Paul, H.C. Bennett, F. Joselin and A. Abiram, Opt. Mater., 148, 114896 (2024); https://doi.org/10.1016/j.optmat.2024.114896
- Y. Song, J. Liu, X. Wang, H. Liang and J. Bai, Opt. Mater., 148, 114825 (2024); https://doi.org/10.1016/j.optmat.2024.114825
- M.R. Venkatraman, G. Rajesh, S. Rajkumar, M.R. Ananthan and G. Balaji, Mater. Lett., 360, 135953 (2024); https://doi.org/10.1016/j.matlet.2024.135953
- J. Shi, J. Chen, X. Wang, Z. Liu, Y. Ma, X. Yang, M. Que and Y. Li, Mater. Today Commun., 38, 107893 (2024); https://doi.org/10.1016/j.mtcomm.2023.107893
- A. Kubiak and M. Ceglowski, Sci. Rep., 14, 262 (2024); https://doi.org/10.1038/s41598-023-51078-0
- N. Thakur, N. Thakur, A. Kumar, V.K. Thakur, S. Kalia, V. Arya, A. Kumar, S. Kumar and G.Z. Kyzas, Sci. Total Environ., 914, 169815 (2024); https://doi.org/10.1016/j.scitotenv.2023.169815
- D.V. Wellia, A.F. Syuadi, R.M. Rahma, A. Syafawi, M.R. Habibillah, S. Arief, K.A. Kurnia, Saepurahman, Y. Kusumawati and A. Saefumillah, Case Stud. Chem. Environ. Eng., 9, 100627 (2024); https://doi.org/10.1016/j.cscee.2024.100627
- L.Y. Gemachu and R.F. Bogale, A Review on the Three Types of Nanocomposites Synthesis, Characterization and Their Applications in Different Areas, Preprints, 2024011201 (2024); https://doi.org/10.20944/preprints202401.1201.v1
- R. Li, Y. Jia, N. Bu, J. Wu and Q. Zhen, J. Alloys Compd., 643, 88 (2015); https://doi.org/10.1016/j.jallcom.2015.03.266
- A. Petala, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D.I. Kondarides and D. Mantzavinos, Water Res., 81, 157 (2015); https://doi.org/10.1016/j.watres.2015.05.056
- E. Fernandes, S. Contreras, F. Medina, R.C. Martins and J. Gomes, Process Saf. Environ. Prot., 138, 80 (2020); https://doi.org/10.1016/j.psep.2020.03.006
- E. Fernandes, R.C. Martins and J. Gomes, Sci. Total Environ., 718, 137321 (2020); https://doi.org/10.1016/j.scitotenv.2020.137321
- M. Ruidíaz-Martínez, M.A. Álvarez, M.V. López-Ramón, G. Cruz-Quesada, J. Rivera-Utrilla and M. Sánchez-Polo, Catalysts, 10, 520 (2020); https://doi.org/10.3390/catal10050520
- T. Velegraki, E. Hapeshi, D. Fatta-Kassinos and I. Poulios, Appl. Catal. B, 178, 2 (2015); https://doi.org/10.1016/j.apcatb.2014.11.022
- J. Gomes, J. Lincho, E. Domingues, M. Gmurek, P. Mazierski, A. Zaleska-Medynska, T. Klimczuk, R.M. Quinta-Ferreira and R.C. Martins, Sci. Total Environ., 689, 79 (2019); https://doi.org/10.1016/j.scitotenv.2019.06.410
- S. Kotzamanidi, Z. Frontistis, V. Binas, G. Kiriakidis and D. Mantzavinos, Catal. Today, 313, 148 (2018); https://doi.org/10.1016/j.cattod.2017.12.006
- J.F. Gomes, I. Leal, K. Bednarczyk, M. Gmurek, M. Stelmachowski, A. Zaleska-Medynska, M.E. Quinta-Ferreira, R. Costa, R.M. Quinta-Ferreira and R.C. Martins, J. Environ. Chem. Eng., 5, 3065 (2017); https://doi.org/10.1016/j.jece.2017.06.010
- X. Liu, L. Zhu, X. Wang and X. Meng, Environ. Sci. Pollut. Res. Int., 27, 13590 (2020); https://doi.org/10.1007/s11356-020-07960-9
- Z. Wang, A. Deb, V. Srivastava, S. Iftekhar, I. Ambat and M. Sillanpää, Separ. Purif. Tech., 228, 115763 (2019); https://doi.org/10.1016/j.seppur.2019.115763
- Z. Zhu and R.J. Wu, J. Taiwan Inst. Chem. Eng., 50, 276 (2015); https://doi.org/10.1016/j.jtice.2014.12.022
- Z. Frontistis, M. Antonopoulou, D. Venieri, S. Dailianis, I. Konstantinou and D. Mantzavinos, Catal. Today, 280, 139 (2017); https://doi.org/10.1016/j.cattod.2016.06.008
- S.W.H. Shah, F. Hameed, Z. Ali, S. Muntha and I. Bibi, J. Taibah Univ. Sci., 16, 976 (2022); https://doi.org/10.1080/16583655.2022.2131992
- A. Sheikhmohammadi, E. Asgari, B. Hashemzadeh and M. Manshouri, Optik, 224, 165667 (2020); https://doi.org/10.1016/j.ijleo.2020.165667
- S.A. Khan, M. Jain, K.K. Pant, Z.M. Ziora and M.A.T. Blaskovich, Ind. Eng. Chem. Res., 62, 6646 (2023); https://doi.org/10.1021/acs.iecr.3c00146
- E.T. Wahyuni, R.N. Cahyono, M. Nora, E.Z. Alharissa and E.S. Kunarti, Results Chem., 7, 101302 (2024); https://doi.org/10.1016/j.rechem.2023.101302
- M. Shokri, A. Jodat, N. Modirshahla and M.A. Behnajady, Environ. Technol., 34, 1161 (2013); https://doi.org/10.1080/09593330.2012.743589
- K.S. Varma, V.G. Gandhi, R.J. Tayade, A.D. Shukla, B. Bharatiya and A. Joshi, eds.: K.J. Shah and V. Gandhi, Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light, In: Advances in Wastewater Treatment II, Materials Research Foundations, vol. 102, pp. 182-198 (2021).
- A. Kutuzova, J.O. Moritz, N.G. Moustakas, T. Dontsova, T. Peppel and J. Strunk, Appl. Nanosci., 13, 6951 (2023); https://doi.org/10.1007/s13204-023-02832-3
- X. Jin, X. Zhou, P. Sun, S. Lin, W. Cao, Z. Li and W. Liu, Chemosphere, 237, 124433 (2019); https://doi.org/10.1016/j.chemosphere.2019.124433
- V. Bhatia, A.K. Ray and A. Dhir, Sep. Purif. Technol., 161, 1 (2016); https://doi.org/10.1016/j.seppur.2016.01.028
- A. Eslami, M.M. Amini, A.R. Yazdanbakhsh, A. Mohseni-Bandpei, A.A. Safari and A. Asadi, J. Chem. Technol. Biotechnol., 91, 2693 (2016); https://doi.org/10.1002/jctb.4877
- I. Tbessi, M. Benito, E. Molins, J. LIorca, A. Touati, S. Sayadi and W. Najjar, Solid State Sci., 88, 20 (2019); https://doi.org/10.1016/j.solidstatesciences.2018.12.004
- S. Pang, J. Huang, Y. Su, B. Geng, S. Lei, Y. Huang, C. Lyu and X. Liu, Photochem. Photobiol., 92, 651 (2016); https://doi.org/10.1111/php.12626
- A.M. Sheikh Asadi and M. Malakootian, J. Mater. Sci. Mater. Electron., 30, 14878 (2019); https://doi.org/10.1007/s10854-019-01859-z
References
H. Effendi, Procedia Environ. Sci., 33, 562 (2016); https://doi.org/10.1016/j.proenv.2016.03.108
D.D. Kundu, D. Dutta, A. Joseph, A. Jana, P. Samanta, J.N. Bhakta and M.A. Alreshidi, Environ. Monit. Assess., 196, 180 (2024); https://doi.org/10.1007/s10661-024-12311-z
V. Subhiksha, S. Kokilavani and S.S. Khan, Chemosphere, 290, 133228 (2022); https://doi.org/10.1016/j.chemosphere.2021.133228
S. Zahmatkesh, A. Bokhari, M. Karimian, M.M.A. Zahra, M. Sillanpää, H. Panchal, A.J. Alrubaie and Y. Rezakhani, Environ. Monit. Assess., 194, 884 (2022); https://doi.org/10.1007/s10661-022-10503-z
R. Kumar, M. Qureshi, D.K. Vishwakarma, N. Al-Ansari, A. Kuriqi, A. Elbeltagi and A. Saraswat, Case Stud. Chem. Environ. Eng., 6, 100219 (2022); https://doi.org/10.1016/j.cscee.2022.100219
A.H. Navidpour, M.B. Ahmed and J.L. Zhou, Nanomaterials, 14, 135 (2024); https://doi.org/10.3390/nano14020135
K. Nowak, E. Jabloñska and W. Ratajczak-Wrona, Environ. Res., 198, 110488 (2021); https://doi.org/10.1016/j.envres.2020.110488
J.L. Liu and M.H. Wong, Environ. Int., 59, 208 (2013); https://doi.org/10.1016/j.envint.2013.06.012
Q.C. Thuy, P.T. Phuong, T.L.T. Thien and B.Q. Minh, Vietnam J. Chem., 60, 738 (2022); https://doi.org/10.1002/vjch.202200016
B. Díaz-Garduño, M.G. Pintado-Herrera, M. Biel-Maeso, J.J. Rueda-Márquez, P.A. Lara-Martín, J.A. Perales, M.A. Manzano, C. Garrido-Pérez and M.L. Martín-Díaz, Water Res., 119, 136 (2017); https://doi.org/10.1016/j.watres.2017.04.021
B. Kasprzyk-Hordern, R.M. Dinsdale and A.J. Guwy, Water Res., 43, 363 (2009); https://doi.org/10.1016/j.watres.2008.10.047
R.A. Trenholm, B.J. Vanderford, J.E. Drewes and S.A. Snyder, J. Chromatogr. A, 1190, 253 (2008); https://doi.org/10.1016/j.chroma.2008.02.032
M. Bilal, S. Mehmood and H.M.N. Iqbal, Cosmetics, 7, 13 (2020); https://doi.org/10.3390/cosmetics7010013
S. Mahapatra, K. Samal and R.R. Dash, J. Environ. Manage., 308, 114668 (2022); https://doi.org/10.1016/j.jenvman.2022.114668
B.O. Orimolade, A.O. Idris, U. Feleni and B. Mamba, Environ. Pollut., 289, 117891 (2021); https://doi.org/10.1016/j.envpol.2021.117891
S. Teixeira, R. Gurke, H. Eckert, K. Kühn, J. Fauler and G. Cuniberti, J. Environ. Chem. Eng., 4, 287 (2016); https://doi.org/10.1016/j.jece.2015.10.045
K. Samal, S. Mahapatra and M. Hibzur Ali, Energy Nexus, 6, 100076 (2022); https://doi.org/10.1016/j.nexus.2022.100076
J. Hollman, J.A. Dominic, G. Achari, C.H. Langford and J.-H. Tay, Environ. Technol., 41, 1107 (2020); https://doi.org/10.1080/09593330.2018.1521475
A. Olasupo and F.B.M. Suah, J. Hazard. Mater., 406, 124317 (2021); https://doi.org/10.1016/j.jhazmat.2020.124317
P.N. Karungamye, Appl. J. Environ. Eng. Sci., 10, 412 (2020); https://doi.org/10.48422/IMIST.PRSM/ajees-v6i4.23828
J. Wang and R. Zhuan, Sci. Total Environ., 701, 135023 (2020); https://doi.org/10.1016/j.scitotenv.2019.135023
K.S. Varma, R.J. Tayade, K.J. Shah, P.A. Joshi, A.D. Shukla and V.G. Gandhi, Water-Energy Nexus, 3, 46 (2020); https://doi.org/10.1016/j.wen.2020.03.008
A.O. Oluwole, E.O. Omotola and O.S. Olatunji, BMC Chem., 14, 62 (2020); https://doi.org/10.1186/s13065-020-00714-1
D.A. Gkika, A.C. Mitropoulos, D.A. Lambropoulou, I.K. Kalavrouziotis and G.Z. Kyzas, Environ. Sci. Pollut. Res. Int., 29, 75223 (2022); https://doi.org/10.1007/s11356-022-23045-1
K.M. Yenkie, Curr. Opin. Chem. Eng., 26, 131 (2019); https://doi.org/10.1016/j.coche.2019.09.002
T.K. Hussein and N.A. Jasim, Mater. Today Proc., 42, 1946 (2021); https://doi.org/10.1016/j.matpr.2020.12.240
A. Piatkowska, M. Janus, K. Szymanski and S. Mozia, Catalysts, 11, 144 (2021); https://doi.org/10.3390/catal11010144
P. Biswas and C.-Y. Wu, J. Air Waste Manag. Assoc., 55, 708 (2005); https://doi.org/10.1080/10473289.2005.10464656
J.H. Won, J.H. Chung, D.J. Jang and Y.W. Kim, Appl. Phys. Lett., 84, 287 (2004); https://doi.org/10.1063/1.1639514
R.A. de Jesus, G.C. de Assis, R.J. Oliveira, J.A.S. Costa, C.M.P. da Silva, H.M.N. Iqbal and L.F.R. Ferreira, Nano-Structures & Nano-Objects, 37, 101071 (2024); https://doi.org/10.1016/j.nanoso.2023.101071
M. Vert, Y. Doi, K.H. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo and F. Schué, Pure Appl. Chem., 84, 377 (2012); https://doi.org/10.1351/PAC-REC-10-12-04
J. Muthami, Graduate Dissertation, Spectrophotometric Characterization of Functionalized Silver Nanoparticles as a Defluoridation Sensor, University of Delaware, Newark, USA (2019).
J.F. Banfield and H. Zhang, Rev. Mineral. Geochem., 44, 1 (2001); https://doi.org/10.2138/rmg.2001.44.01
D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu and L. Yang, Chemosphere, 275, 130104 (2024); https://doi.org/10.1016/j.chemosphere.2021.130104
M.A. Oturan and J.J. Aaron, Crit. Rev. Environ. Sci. Technol., 44, 2577 (2014); https://doi.org/10.1080/10643389.2013.829765
S.A. Mandavgane, Mater. Today Proc., 29, 1213 (2020); https://doi.org/10.1016/j.matpr.2020.05.478
B. Bethi, S.H. Sonawane, B.A. Bhanvase and S.P. Gumfekar, Chem. Eng. Process., 109, 178 (2016); https://doi.org/10.1016/j.cep.2016.08.016
M.A. Al-Nuaim, A.A. Alwasiti and Z.Y. Shnain, Chem. Zvesti, 77, 677 (2023); https://doi.org/10.1007/s11696-022-02468-7
U.E. Romman, I. Shakir, I.A. Shaaban, M.A. Assiri, K. Chaudhary, M.F. Warsi and M. Shahid, Opt. Mater., 147, 114678 (2024); https://doi.org/10.1016/j.optmat.2023.114678
H. Yu, K. Zhang and C. Rossi, J. Photochem. Photobiol. Chem., 188, 65 (2007); https://doi.org/10.1016/j.jphotochem.2006.11.021
S.M. Gupta and M. Tripathi, Chin. Sci. Bull., 56, 1639 (2011); https://doi.org/10.1007/s11434-011-4476-1
M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee and M.H. Cho, J. Mater. Chem. A Mater. Energy Sustain., 2, 637 (2014); https://doi.org/10.1039/C3TA14052K
M.N. Shabbir, R. Alabada, M. Aadil, Z. Ahmad, A.A. Alothman, N.A. Almuhous, W.A. Khan and R.M.K. Mohamed, Ceram. Int., 50, 4404 (2024); https://doi.org/10.1016/j.ceramint.2023.11.143
Z. Malik, S.A. Ibrahim, A.R. Ainuddin, R. Hussin and Z. Kamdi, AIP Conf. Preceed., 2925, 020058 (2024); https://doi.org/10.1063/5.0183197
Q. Gao, L. Sun, Z. Wang and J. Deng, Chin. Chem. Lett., 35, 109255 (2024); https://doi.org/10.1016/j.cclet.2023.109255
M. Karuppiah and R. Rajmohan, Mater. Lett., 97, 141 (2013); https://doi.org/10.1016/j.matlet.2013.01.087
N. Seman, Z.I. Tarmizi, R.R. Ali, S.H.M. Taib, M.S.N. Salleh, J.C. Zhe, S.M. Sukri, IOP Conf. Ser.: Earth Environ. Sci., 1091, 012064 (2022); https://doi.org/10.1088/1755-1315/1091/1/012064
R. Yadav and R. Purwar, Polym. Test., 93, 106916 (2021); https://doi.org/10.1016/j.polymertesting.2020.106916
B.K. Thakur, A. Kumar and D. Kumar, S. Afr. J. Bot., 124, 223 (2019); https://doi.org/10.1016/j.sajb.2019.05.024
D.A.A. Fadeel, M.S. Hanafy, N.A. Kelany and M.A. Elywa, Heliyon, 7, e07370 (2021); https://doi.org/10.1016/j.heliyon.2021.e07370
A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari and M. Atarod, J. Alloys Compd., 689, 15 (2016); https://doi.org/10.1016/j.jallcom.2016.07.253
R. Sazonov, G. Kholodnaya, D. Ponomarev, M. Zhuravlev, I. Pyatkov, F. Konusov, O. Lapteva and R. Gadirov, Physica B, 619, 413208 (2021); https://doi.org/10.1016/j.physb.2021.413208
M. Aslam, A.Z. Abdullah and M. Rafatullah, J. Ind. Eng. Chem., 98, 1 (2021); https://doi.org/10.1016/j.jiec.2021.04.010
M. Aravind, M. Amalanathan and M.S.M. Mary, SN Appl. Sci., 3, 409 (2021); https://doi.org/10.1007/s42452-021-04281-5
N. Chokesawatanakit, S. Phanthanawiboon, J.T.N. Knijnenburg, S. Theerakulpisut, S. Thammasang and K. Kamwilaisak, Int. J. Biol. Macromol., 256, 128321 (2024); https://doi.org/10.1016/j.ijbiomac.2023.128321
M.K. Elizabeth, R.U. Devi, M. Parameshwar and A. Ratnamala, Asian J. Chem., 36, 1308 (2024); https://doi.org/10.14233/ajchem.2024.31421
A.V. Nimmy, A. Mahesh and V.M. Anandakumar, J. Phys. Chem. Solids, 185, 111774 (2024); https://doi.org/10.1016/j.jpcs.2023.111774
A. Ashok, R. Jeba Beula, R. Magesh, G. Unnikrishnan, P.M. Paul, H.C. Bennett, F. Joselin and A. Abiram, Opt. Mater., 148, 114896 (2024); https://doi.org/10.1016/j.optmat.2024.114896
Y. Song, J. Liu, X. Wang, H. Liang and J. Bai, Opt. Mater., 148, 114825 (2024); https://doi.org/10.1016/j.optmat.2024.114825
M.R. Venkatraman, G. Rajesh, S. Rajkumar, M.R. Ananthan and G. Balaji, Mater. Lett., 360, 135953 (2024); https://doi.org/10.1016/j.matlet.2024.135953
J. Shi, J. Chen, X. Wang, Z. Liu, Y. Ma, X. Yang, M. Que and Y. Li, Mater. Today Commun., 38, 107893 (2024); https://doi.org/10.1016/j.mtcomm.2023.107893
A. Kubiak and M. Ceglowski, Sci. Rep., 14, 262 (2024); https://doi.org/10.1038/s41598-023-51078-0
N. Thakur, N. Thakur, A. Kumar, V.K. Thakur, S. Kalia, V. Arya, A. Kumar, S. Kumar and G.Z. Kyzas, Sci. Total Environ., 914, 169815 (2024); https://doi.org/10.1016/j.scitotenv.2023.169815
D.V. Wellia, A.F. Syuadi, R.M. Rahma, A. Syafawi, M.R. Habibillah, S. Arief, K.A. Kurnia, Saepurahman, Y. Kusumawati and A. Saefumillah, Case Stud. Chem. Environ. Eng., 9, 100627 (2024); https://doi.org/10.1016/j.cscee.2024.100627
L.Y. Gemachu and R.F. Bogale, A Review on the Three Types of Nanocomposites Synthesis, Characterization and Their Applications in Different Areas, Preprints, 2024011201 (2024); https://doi.org/10.20944/preprints202401.1201.v1
R. Li, Y. Jia, N. Bu, J. Wu and Q. Zhen, J. Alloys Compd., 643, 88 (2015); https://doi.org/10.1016/j.jallcom.2015.03.266
A. Petala, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D.I. Kondarides and D. Mantzavinos, Water Res., 81, 157 (2015); https://doi.org/10.1016/j.watres.2015.05.056
E. Fernandes, S. Contreras, F. Medina, R.C. Martins and J. Gomes, Process Saf. Environ. Prot., 138, 80 (2020); https://doi.org/10.1016/j.psep.2020.03.006
E. Fernandes, R.C. Martins and J. Gomes, Sci. Total Environ., 718, 137321 (2020); https://doi.org/10.1016/j.scitotenv.2020.137321
M. Ruidíaz-Martínez, M.A. Álvarez, M.V. López-Ramón, G. Cruz-Quesada, J. Rivera-Utrilla and M. Sánchez-Polo, Catalysts, 10, 520 (2020); https://doi.org/10.3390/catal10050520
T. Velegraki, E. Hapeshi, D. Fatta-Kassinos and I. Poulios, Appl. Catal. B, 178, 2 (2015); https://doi.org/10.1016/j.apcatb.2014.11.022
J. Gomes, J. Lincho, E. Domingues, M. Gmurek, P. Mazierski, A. Zaleska-Medynska, T. Klimczuk, R.M. Quinta-Ferreira and R.C. Martins, Sci. Total Environ., 689, 79 (2019); https://doi.org/10.1016/j.scitotenv.2019.06.410
S. Kotzamanidi, Z. Frontistis, V. Binas, G. Kiriakidis and D. Mantzavinos, Catal. Today, 313, 148 (2018); https://doi.org/10.1016/j.cattod.2017.12.006
J.F. Gomes, I. Leal, K. Bednarczyk, M. Gmurek, M. Stelmachowski, A. Zaleska-Medynska, M.E. Quinta-Ferreira, R. Costa, R.M. Quinta-Ferreira and R.C. Martins, J. Environ. Chem. Eng., 5, 3065 (2017); https://doi.org/10.1016/j.jece.2017.06.010
X. Liu, L. Zhu, X. Wang and X. Meng, Environ. Sci. Pollut. Res. Int., 27, 13590 (2020); https://doi.org/10.1007/s11356-020-07960-9
Z. Wang, A. Deb, V. Srivastava, S. Iftekhar, I. Ambat and M. Sillanpää, Separ. Purif. Tech., 228, 115763 (2019); https://doi.org/10.1016/j.seppur.2019.115763
Z. Zhu and R.J. Wu, J. Taiwan Inst. Chem. Eng., 50, 276 (2015); https://doi.org/10.1016/j.jtice.2014.12.022
Z. Frontistis, M. Antonopoulou, D. Venieri, S. Dailianis, I. Konstantinou and D. Mantzavinos, Catal. Today, 280, 139 (2017); https://doi.org/10.1016/j.cattod.2016.06.008
S.W.H. Shah, F. Hameed, Z. Ali, S. Muntha and I. Bibi, J. Taibah Univ. Sci., 16, 976 (2022); https://doi.org/10.1080/16583655.2022.2131992
A. Sheikhmohammadi, E. Asgari, B. Hashemzadeh and M. Manshouri, Optik, 224, 165667 (2020); https://doi.org/10.1016/j.ijleo.2020.165667
S.A. Khan, M. Jain, K.K. Pant, Z.M. Ziora and M.A.T. Blaskovich, Ind. Eng. Chem. Res., 62, 6646 (2023); https://doi.org/10.1021/acs.iecr.3c00146
E.T. Wahyuni, R.N. Cahyono, M. Nora, E.Z. Alharissa and E.S. Kunarti, Results Chem., 7, 101302 (2024); https://doi.org/10.1016/j.rechem.2023.101302
M. Shokri, A. Jodat, N. Modirshahla and M.A. Behnajady, Environ. Technol., 34, 1161 (2013); https://doi.org/10.1080/09593330.2012.743589
K.S. Varma, V.G. Gandhi, R.J. Tayade, A.D. Shukla, B. Bharatiya and A. Joshi, eds.: K.J. Shah and V. Gandhi, Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light, In: Advances in Wastewater Treatment II, Materials Research Foundations, vol. 102, pp. 182-198 (2021).
A. Kutuzova, J.O. Moritz, N.G. Moustakas, T. Dontsova, T. Peppel and J. Strunk, Appl. Nanosci., 13, 6951 (2023); https://doi.org/10.1007/s13204-023-02832-3
X. Jin, X. Zhou, P. Sun, S. Lin, W. Cao, Z. Li and W. Liu, Chemosphere, 237, 124433 (2019); https://doi.org/10.1016/j.chemosphere.2019.124433
V. Bhatia, A.K. Ray and A. Dhir, Sep. Purif. Technol., 161, 1 (2016); https://doi.org/10.1016/j.seppur.2016.01.028
A. Eslami, M.M. Amini, A.R. Yazdanbakhsh, A. Mohseni-Bandpei, A.A. Safari and A. Asadi, J. Chem. Technol. Biotechnol., 91, 2693 (2016); https://doi.org/10.1002/jctb.4877
I. Tbessi, M. Benito, E. Molins, J. LIorca, A. Touati, S. Sayadi and W. Najjar, Solid State Sci., 88, 20 (2019); https://doi.org/10.1016/j.solidstatesciences.2018.12.004
S. Pang, J. Huang, Y. Su, B. Geng, S. Lei, Y. Huang, C. Lyu and X. Liu, Photochem. Photobiol., 92, 651 (2016); https://doi.org/10.1111/php.12626
A.M. Sheikh Asadi and M. Malakootian, J. Mater. Sci. Mater. Electron., 30, 14878 (2019); https://doi.org/10.1007/s10854-019-01859-z