Copyright (c) 2024 SURESH B
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Electron Beam Irradiated Palladium on Carbon Catalysts for Transfer Hydrogenation Reactions of Nitroarenes Compounds
Corresponding Author(s) : B. Suresh
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
Palladium-catalyzed hydrogenation is considered a crucial stage in the entire synthesis of difficult natural products as well as a crucial step in the manufacturing of fine compounds used in pharmaceuticals. When it comes to the reaction rate and simplicity of work-up, using Pd/C as heterogeneous catalyst is one of the best choice for process efficiency. In this study, nitroarenes compounds viz. 3-bromo nitrobenzene, 4-fluoro nitrobenzene, 3-methyl nitrobenzene, 4-hydroxy nitrobenzene reduced by using macro 10% Pd/C and micro 10% Pd/C to 3-bromo aniline, 4-fluoro aniline, 3-methyl aniline, 4-hydroxy aniline respectively and verified from 1H NMR studies. The reduction reactions were similar conditions using electron beam irradiated 250 kGy macro and micro 10% Pd/C catalyst. The effectiveness of commercial sources of palladium on carbon (Pd/C) varies widely, leading to the appreciable variations in the reaction times. The decrease in reaction time has been attributed to the higher dispersion of Pd particles upon irradiation. The physico-chemical characteristics of effective hydrogenation catalysts were determined to be: (i) small Pd particle size and (ii) homogeneous distribution of Pd on the carbon support. With no significant loss of catalytic activity, the electron beam-irradiated catalyst can be used again for five runs. These days, chemists can determine as well as forecast the effectiveness of catalysts before investing time and money in expensive synthetic materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.T. Anastas, M.M. Kirchhoff and T.C. Williamson, Appl. Catal. A Gen., 221, 3 (2001); https://doi.org/10.1016/S0926-860X(01)00793-1
- C. Rizzo, A. Pace, I. Pibiri, S. Buscemi and A.P. Piccionello, ChemSusChem, 17, e202301604 (2024); https://doi.org/10.1002/cssc.202301604
- X. Liu and H.-J. Peng, Engineering, 39, 25 (2024); https://doi.org/10.1016/j.eng.2023.07.021
- K.F. Kalz, R. Kraehnert, M. Dvoyashkin, R. Dittmeyer, R. Gläser, U. Krewer, K. Reuter and J.-D. Grunwaldt, ChemCatChem, 9, 17 (2017); https://doi.org/10.1002/cctc.201600996
- R. Schlogl, Angew. Chem. Int. Ed., 54, 3465 (2015); https://doi.org/10.1002/anie.201410738
- X. Hu and A.C.K. Yip, Front. Catal., 1, 667675 (2021); https://doi.org/10.3389/fctls.2021.667675
- Z.-Y. Yuan, W. Zhou, V. Parvulescu and B.-L. Su, J. Electron Spectrosc. Relat. Phenom., 129, 189 (2003); https://doi.org/10.1016/S0368-2048(03)00068-9
- J. Jun, J.-C. Kim, J.-H. Shin, K.-W. Lee and Y.S. Baek, Radiat. Phys. Chem., 71, 1095 (2004); https://doi.org/10.1016/j.radphyschem.2003.07.006
- V. Múèka, B. Otáhal and R. Silber, Radiat. Phys. Chem., 65, 177 (2002); https://doi.org/10.1016/S0969-806X(02)00191-3
- W. Wesch and E. Wendler, Ion Beam Modification of Solids; In Ion-Solid Interaction and Radiation Damage, Springer Series in Surface Sciences, Springer International Publishing: Cham, Switzerland, vol. 61 (2016).
- P.V. Markov, A.S. Pribytkov, N.N. Tolkachev, A.Y. Stakheev, L.M. Kustov, V.N. Golubeva and A.V. Tel’nov, Kinet. Catal., 49, 765 (2008); https://doi.org/10.1134/S0023158408050236
- A.S. Pribytkov, O.P. Tkachenko, A.Y. Stakheev, K.V. Klementiev, W. Grunert, M.W.E. van den Berg, L.M. Kustov, V.N. Golubeva and A.V. Tel’nov, Mendeleev Commun., 16, 254 (2006); https://doi.org/10.1070/MC2006v016n05ABEH002371
- C. Crawford and S. Oscarson, Eur. J. Org. Chem., 2020, 3332 (2020); https://doi.org/10.1002/ejoc.202000401
- W. Hu, G.X. Li, J.J. Chen, F.J. Huang, Y. Wu, S.D. Yuan, L. Zhong and Y.Q. Chen, Chem. Commun., 53, 6160 (2017); https://doi.org/10.1039/C7CC01997A
- H.J. Cho, V.T. Chen, S. Qiao, W.-T. Koo, R.M. Penner and I.-D. Kim, ACS Sens., 3, 2152 (2018); https://doi.org/10.1021/acssensors.8b00714
- J. Zhao, W. Jing, T. Tan, X. Liu, Y. Kang and W. Wang, New J. Chem., 44, 4604 (2020); https://doi.org/10.1039/C9NJ06259A
- P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, J. Wang, Z. Xu, X. Xu and Z. Zeng, Nanoscale, 4, 5597 (2012); https://doi.org/10.1039/c2nr31010d
- L. Lan, F. Du and C. Xia, RSC Adv., 6, 109023 (2016); https://doi.org/10.1039/C6RA21213A
- W. Xu, C. Lv, Y. Zou, J. Ren, X. She, Y. Zhu, Y. Zhang, S. Chen, X. Yang, T. Zhan, J. Sun and D. Yang, J. Power Sources, 442, 227184 (2019); https://doi.org/10.1016/j.jpowsour.2019.227184
- S. Meher and R.K. Rana, Green Chem., 21, 2494 (2019); https://doi.org/10.1039/C9GC00116F
- J. Lv, S. Wu, Z. Tian, Y. Ye, J. Liu and C. Liang, J. Mater. Chem. A Mater. Energy Sustain., 7, 12627 (2019); https://doi.org/10.1039/C9TA02045D
- L. Han, Q. Li, S. Chen, W. Xie, W. Bao, L. Chang and J. Wang, Sci. Rep., 7, 7448 (2017); https://doi.org/10.1038/s41598-017-07802-8
References
P.T. Anastas, M.M. Kirchhoff and T.C. Williamson, Appl. Catal. A Gen., 221, 3 (2001); https://doi.org/10.1016/S0926-860X(01)00793-1
C. Rizzo, A. Pace, I. Pibiri, S. Buscemi and A.P. Piccionello, ChemSusChem, 17, e202301604 (2024); https://doi.org/10.1002/cssc.202301604
X. Liu and H.-J. Peng, Engineering, 39, 25 (2024); https://doi.org/10.1016/j.eng.2023.07.021
K.F. Kalz, R. Kraehnert, M. Dvoyashkin, R. Dittmeyer, R. Gläser, U. Krewer, K. Reuter and J.-D. Grunwaldt, ChemCatChem, 9, 17 (2017); https://doi.org/10.1002/cctc.201600996
R. Schlogl, Angew. Chem. Int. Ed., 54, 3465 (2015); https://doi.org/10.1002/anie.201410738
X. Hu and A.C.K. Yip, Front. Catal., 1, 667675 (2021); https://doi.org/10.3389/fctls.2021.667675
Z.-Y. Yuan, W. Zhou, V. Parvulescu and B.-L. Su, J. Electron Spectrosc. Relat. Phenom., 129, 189 (2003); https://doi.org/10.1016/S0368-2048(03)00068-9
J. Jun, J.-C. Kim, J.-H. Shin, K.-W. Lee and Y.S. Baek, Radiat. Phys. Chem., 71, 1095 (2004); https://doi.org/10.1016/j.radphyschem.2003.07.006
V. Múèka, B. Otáhal and R. Silber, Radiat. Phys. Chem., 65, 177 (2002); https://doi.org/10.1016/S0969-806X(02)00191-3
W. Wesch and E. Wendler, Ion Beam Modification of Solids; In Ion-Solid Interaction and Radiation Damage, Springer Series in Surface Sciences, Springer International Publishing: Cham, Switzerland, vol. 61 (2016).
P.V. Markov, A.S. Pribytkov, N.N. Tolkachev, A.Y. Stakheev, L.M. Kustov, V.N. Golubeva and A.V. Tel’nov, Kinet. Catal., 49, 765 (2008); https://doi.org/10.1134/S0023158408050236
A.S. Pribytkov, O.P. Tkachenko, A.Y. Stakheev, K.V. Klementiev, W. Grunert, M.W.E. van den Berg, L.M. Kustov, V.N. Golubeva and A.V. Tel’nov, Mendeleev Commun., 16, 254 (2006); https://doi.org/10.1070/MC2006v016n05ABEH002371
C. Crawford and S. Oscarson, Eur. J. Org. Chem., 2020, 3332 (2020); https://doi.org/10.1002/ejoc.202000401
W. Hu, G.X. Li, J.J. Chen, F.J. Huang, Y. Wu, S.D. Yuan, L. Zhong and Y.Q. Chen, Chem. Commun., 53, 6160 (2017); https://doi.org/10.1039/C7CC01997A
H.J. Cho, V.T. Chen, S. Qiao, W.-T. Koo, R.M. Penner and I.-D. Kim, ACS Sens., 3, 2152 (2018); https://doi.org/10.1021/acssensors.8b00714
J. Zhao, W. Jing, T. Tan, X. Liu, Y. Kang and W. Wang, New J. Chem., 44, 4604 (2020); https://doi.org/10.1039/C9NJ06259A
P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, J. Wang, Z. Xu, X. Xu and Z. Zeng, Nanoscale, 4, 5597 (2012); https://doi.org/10.1039/c2nr31010d
L. Lan, F. Du and C. Xia, RSC Adv., 6, 109023 (2016); https://doi.org/10.1039/C6RA21213A
W. Xu, C. Lv, Y. Zou, J. Ren, X. She, Y. Zhu, Y. Zhang, S. Chen, X. Yang, T. Zhan, J. Sun and D. Yang, J. Power Sources, 442, 227184 (2019); https://doi.org/10.1016/j.jpowsour.2019.227184
S. Meher and R.K. Rana, Green Chem., 21, 2494 (2019); https://doi.org/10.1039/C9GC00116F
J. Lv, S. Wu, Z. Tian, Y. Ye, J. Liu and C. Liang, J. Mater. Chem. A Mater. Energy Sustain., 7, 12627 (2019); https://doi.org/10.1039/C9TA02045D
L. Han, Q. Li, S. Chen, W. Xie, W. Bao, L. Chang and J. Wang, Sci. Rep., 7, 7448 (2017); https://doi.org/10.1038/s41598-017-07802-8