Main Article Content

Abstract

Nowadays incorporation of few oxygen groups between the layers of graphite have shown potential approach for industrialization of graphene oxide for different potential applications. During the strong oxidation process in modified Hummers method, these oxygen based functional groups may increase the distance, weakening the van der Waals forces and facilitation the exfoliation of graphite layers from. The reduced graphene oxide/copper oxide (rGO-CuO) is highly potentially active and selective catalyst for many environmental applications. Different wt. % of Cu(II) and loaded on rGO surface to form a nanocomposite, which were prepared by hydrothermal method. The influence of hydrothermal temperature, rGO sheet and loaded CuO on structure of graphene was systematically investigated. The structure and optical properties of the obtained hybrid composite was evaluated employing scanning
electron microscope, X-ray diffraction, UV-visible and infrared spectroscopies. The photocatalytic activities of rGO-CuO nanocomposites for the degradation of Eosin B acid red under sunlight were investigated. The results revealed the decrease in percentage photocatalytic degradation rate occurred on rGO-CuO, because a single sheet of rGO can shield the light from reaching the surface of CuO photocatalyst. It is possible to provide a new way to use the host rGO as prepared by hydrothermal method for water remediation applications. 

Keywords

Degradation Eosin Blue Hummer’s method Photocatalyst Reduced graphene oxide/copper oxide

Article Details

References

  1. J.D. Bracken, The History and Use of Our Earth’s Chemical Elements: A Reference Guide (Krebs, Robert E.), J. Chem. Educ., 76, 475 (1999); https://doi.org/10.1021/ed076p475.
  2. A. Anouzla, Y. Abrouki, S. Souabi, M. Safi and H. Rhbal, Colour and Cod Removal of Disperse Dye Solution by a Novel Coagulant: Applica-tion of Statistical Design for the Optimization and Regression Analysis, J. Hazard. Mater., 166, 1302 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.039.
  3. D. Cailean, C. Teodosiu and F. Brînza, Studies Regarding Advanced Processes Used for Reactive Dyes Removal From Textile Effluents, Environ. Eng. Manag. J., 8, 1045 (2009); https://doi.org/10.30638/eemj.2009.154.
  4. C. Thamaraiselvan, M. Noel, Membrane Processes for Dye Wastewater Treatment: Recent Progress in Fouling Control, Crit. Rev. Environ. Sci. Technol., 45, 1007 (2015); https://doi.org/10.1080/10643389.2014.900242.
  5. K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media, J. Photochem. Photobiol. C Photochem. Rev., 9, 171 (2008); https://doi.org/10.1016/j.jphotochemrev.2008.09.001.
  6. H.Y. Shu, C.R. Huang, Degradation of Commercial Azo Dyes in Water using Ozonation and UV Enhanced Ozonation Process, Chemosphere, 31, 3813 (1995); https://doi.org/10.1016/0045-6535(95)00255-7.
  7. R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han and C. Li, Spatial Separation of Photogenerated Electrons and Holes Among {010} and {110} Crystal Facets of BiVO4, Nat. Commun., 4, 1432 (2013); https://doi.org/10.1038/ncomms2401.
  8. A.C. Neto, F. Guinea and N.M. Peres, Drawing Conclusions from Graphene, Phys. World, 19, 33 (2006); https://doi.org/10.1088/2058-7058/19/11/34.
  9. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen and R.S. Ruoff, Graphene Based Composite Materials, Nature, 442, 282 (2006) https://doi.org/10.1038/nature04969.
  10. Q. Xiang, J. Yu and M. Jaroniec, Graphene-Based Semiconductor Photocatalysts, Chem. Soc. Rev., 41, 782 (2012) https://doi.org/10.1039/C1CS15172J.
  11. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, The Electronic Properties of Graphene, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109.
  12. N. Salam, A. Sinha, A.S. Roy, P. Mondal, N.R. Jana and S.M. Islam, Synthesis of Silver-graphene Nanocomposite and Its Catalytic Application for the One-pot Three-component Coupling Reaction and One-Pot Synthesis of 1,4-Disubstituted 1,2,3-triazoles in Water, RSC Adv., 4, 10001 (2014); https://doi.org/10.1039/c3ra47466f.
  13. K.S. Novoselov, A.K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896.
  14. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching Ballistic Transport in Suspended Graphene, Nat. Nanotechnol., 3, 491 (2008); https://doi.org/10.1038/nnano.2008.199.
  15. C. Lee, X. Wei, J.W. Kysar and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996.
  16. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872.
  17. P. Manjunatha, Y.A. Nayaka, B.K. Chethana, C.C. Vidyasagar and R.O. Yathisha, SEnsing And Bio-sensing Research Development of Multi-Walled Carbon Nanotubes Modified Pencil Graphite Electrode for the Electrochemical Investigation of Aceclofenac Present in Pharmaceutical and Biological Samples, Sens. Bio-Sensing Res., 17, 7 (2018); https://doi.org/10.1016/j.sbsr.2017.12.001.
  18. K. Ojha, O. Anjaneyulu and A.K. Ganguli, Graphene-Based Hybrid Materials: Synthetic Approaches and Properties, Curr. Sci., 107, 397 (2014).
  19. C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesh and R. Viswanatha, Solid-State Synthesis and Effect of Temperature on Optical Properties of Cu-ZnO, Cu-CdO and CuO Nanoparticles, Powder Technol., 214, 337 (2011); https://doi.org/10.1016/j.powtec.2011.08.025.
  20. H. Jiang, Chemical Preparation of Graphene-based Nanomaterials and their Applications in Chemical and Biological Sensors, Small, 7, 2413 (2011); https://doi.org/10.1002/smll.201002352.
  21. C.C. Vidyasagar, G. Hosamani and P. Kariyajjanavar, One-Pot Micro-wave Synthesis and Effect of Cu2+ Ions on Structural Properties of Cu-ZnO Nano Crystals, Mater. Today Proc., 5, 22171 (2018); https://doi.org/10.1016/j.matpr.2018.06.582.
  22. S. Yang, X. Feng and K. Müllen, Sandwich-Like, Graphene-Based Titania Nanosheets with High Surface Area for Fast Lithium Storage, Adv. Mater., 23, 3575 (2011); https://doi.org/10.1002/adma.201101599.
  23. Q. Xiang, J. Yu and M. Jaroniec, Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles, J. Am. Chem. Soc., 134, 6575 (2012); https://doi.org/10.1021/ja302846n.
  24. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan and A. Stephen, Enhanced Photocatalytic Activity of ZnO/CuO Nano-composite for the Degradation of Textile Dye on Visible Light Illumination, Mater. Sci. Eng. C, 33, 91 (2013); https://doi.org/10.1016/j.msec.2012.08.011.
  25. B. Luo, S. Liu and L. Zhi, Chemical Approaches toward Graphene-Based Nanomaterials and their Applications in Energy-Related Areas, Small, 8, 630 (2012); https://doi.org/10.1002/smll.201101396.
  26. K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller and M. Chhowalla, Atomic and Electronic Structure of Graphene-Oxide, Nano Lett., 9, 1058 (2009); https://doi.org/10.1021/nl8034256.
  27. N. Özer and F. Tepehan, Optical and Electrochemical Characteristics of Sol Gel Deposited Iron Oxide Films, Sol. Energy Mater. Sol. Cells, 56, 141 (1999); https://doi.org/10.1016/S0927-0248(98)00152-4.
  28. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, Graphene: The New Two-Dimensional Nanomaterial, Angew. Chem. Int. Ed., 48, 7752 (2009); https://doi.org/10.1002/anie.200901678.
  29. M. Khan, A.H. Al-Marri, M. Khan, M.R. Shaik, N. Mohri, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A. Al-Warthan, W. Tremel, M.N. Tahir and M.R.H. Siddiqui, Green Approach for the Effective Reduction of Graphene Oxide using Salvadora persica L. Root (Miswak) Extract, Nanoscale Res. Lett., 10, 1 (2015); https://doi.org/10.1186/s11671-015-0987-z.
  30. J.S.Y. Chia, M.T.T. Tan, P.S. Khiew, J.K. Chin, H. Lee, D.C.S. Bien and C.W. Siong, A Novel One Step Synthesis of Graphene via Sonochemical-Assisted Solvent Exfoliation Approach for Electrochemical Sensing Application, Chem. Eng. J., 249, 270 (2014); https://doi.org/10.1016/j.cej.2014.03.081.
  31. E. Murray, S. Sayyar, B.C. Thompson, R. Gorkin III, D.L. Officer and G.G. Wallace, A Bio-friendly, Green Route to Processable, Biocompatible Graphene/Polymer Composites, RSC Adv., 5, 45284 (2015); https://doi.org/10.1039/C5RA07210G.
  32. C. Hu, T. Lu, F. Chen and R. Zhang, A Brief Review of Graphene–Metal Oxide Composites Synthesis and Applications in Photocatalysis, J. Chinese Adv. Mater. Soc., 1, 21 (2013); https://doi.org/10.1080/22243682.2013.771917.
  33. C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesha and P. Manjunatha, Sol–Gel Synthesis Using Glacial Acetic Acid and Optical Properties of Anatase Cu–TiO2 Nanoparticles, J. Nanoeng. Nanomanuf., 2, 91 (2012); https://doi.org/10.1166/jnan.2012.1058.
  34. N. Yusoff, N.M. Huang, M.R. Muhamad, S.V. Kumar, H.N. Lim and I. Harrison, Hydrothermal Synthesis of CuO/Functionalized Graphene Nanocomposites for Dye Degradation, Mater. Lett., 93, 393 (2013); https://doi.org/10.1016/j.matlet.2012.10.015.
  35. B. Cao, S. Cao, P. Dong, J. Gao and J. Wang, High Antibacterial Activity of Ultrafine TiO2/Graphene Sheets Nanocomposites under Visible Light Irradiation, Mater. Lett., 93, 349 (2013); https://doi.org/10.1016/j.matlet.2012.11.136.
  36. J. Zhang, Z. Xiong and X.S. Zhao, Graphene–Metal–Oxide Composites for the Degradation of Dyes Under Visible Light Irradiation, J. Mater. Chem., 21, 3634 (2011); https://doi.org/10.1039/c0jm03827j.
  37. A. Chidembo, S.H. Aboutalebi, K. Konstantinov, M. Salari, B. Winton, S.A. Yamini, I.P. Nevirkovets and H.K. Liu, Globular Reduced Graphene Oxide-Metal Oxide Structures for Energy Storage Applications, Energy Environ. Sci., 5, 5236 (2012); https://doi.org/10.1039/C1EE02784K.
  38. L. Richtera, D. Chudobova, M. Kremplova, V. Milosavljevic, P. Kopel, K. Cihalova, I. Blazkova, D. Hynek, V. Adam and R. Kizek, The Composites of Graphene Oxide with Metal or Semimetal Nanoparticles and their Effect on Pathogenic Microorganism, Materials, 8, 2994 (2015); https://doi.org/10.3390/ma8062994.
  39. S. Botta, J. Navìo, M. Hidalgo, G.M. Restrepo and M.I. Litter, Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors Prepared by a Sol–Gel Technique, J. Photochem. Photobiol. A Chem., 129, 89 (1999); https://doi.org/10.1016/S1010-6030(99)00150-1.
  40. Y. Hu, J. Jin, P. Wu, H. Zhang and C. Cai, Graphene-Gold Nanostructure Composites Fabricated by Electrodeposition and their Electrocatalytic Activity toward the Oxygen Reduction and Glucose Oxidation, Electrochim. Acta, 56, 491 (2010); https://doi.org/10.1016/j.electacta.2010.09.021.
  41. R. Liu, S. Li, X. Yu, G. Zhang, S. Zhang, J. Yao, B. Keita, L. Nadjo and L. Zhi, Facile Synthesis of Au nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzyme-Free Electrochemical Biosensor for Hydrogen Peroxide, Small, 8, 1398 (2012); https://doi.org/10.1002/smll.201102298.
  42. C. Zhu, J. Zhai, D. Wen and S. Dong, Graphene Oxide/Polypyrrole Nanocomposites: One-step Electrochemical Doping, Coating and Synergistic Effect for Energy Storage, J. Mater. Chem., 22, 6300 (2012); https://doi.org/10.1039/c2jm16699b.
  43. S. Rout, M.S.c Thesis, Synthesis and Characterization of CuO/Graphene Oxide Composite, National Institute of Technology, Rourkela, India (2013).
  44. P. Benjwal, M. Kumar, P. Chamoli and K.K. Kar, Enhanced Photo-catalytic Degradation of Methylene Blue and Adsorption of Arsenic(III) by Reduced Graphene Oxide (rGO)-Metal Oxide (TiO2/Fe3O4) based nanocomposites, RSC Adv., 5, 73249 (2015); https://doi.org/10.1039/c5ra13689j.
  45. Y. Ma and J.-N. Yao, Photodegradation of Rhodamine B Catalyzed by TiO2 Thin Films, J. Photochem. Photobiol. A Chem., 116, 167 (1998); https://doi.org/10.1016/S1010-6030(98)00295-0.