Main Article Content

Abstract

Reliable data obtained from analysis of DNA, proteins, bacteria and other disease-related molecules or organisms in biological samples
have become a fundamental and crucial part of human health diagnostics and therapy. After a brief summary of the implication of template based ordered mesoporous materials in electrochemical science, the various types of inorganic and organic-inorganic hybrid mesostructured used to date in electroanalysis and the corresponding electrode configurations are described. The development of non-invasive tests that are rapid, sensitive, specific and simple would allow patient discomfort to be prevented, delays in diagnosis to be avoided and the status of a disease to be followed up. The use of biosensors for the early diagnosis of diseases has become widely accepted as a point-of-care diagnosis with appropriate specificity in a short time. To allow a reliable diagnosis of a disease at an early stage, highly sensitive biosensors are required as the corresponding biomarkers are generally expressed at very low concentrations. In past 50 years, various biosensors have been researched and developed encompassing a wide range of applications. This contrasts the limited number of commercially available biosensors. Lately, graphene-based materials have been considered as superior over other nanomaterials for the development of sensitive biosensors. The advantages of graphene-based sensor interfaces are numerous, including enhanced surface loading of desired ligand due to the high surface-to-volume ratio, excellent conductivity and a small band gap that is beneficial for sensitive electrical and electrochemical read-outs, as well as tunable optical properties for optical read-outs such as fluorescence and plasmonics. In this paper, we review the advances made in recent years on graphene-based biosensors in the field of medical diagnosis.

Keywords

Biosensors Graphene Mesoporous materials

Article Details

References

  1. L.C. Clark Jr., Monitor and Control of Blood and Tissue Oxygen Tensions, Trans. Am. Soc. Artif. Intern. Organs, 2, 41 (1956).
  2. L.C. Clark Jr. and C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Ann. N.Y. Acad. Sci., 102, 29 (1962); https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
  3. B. Lieberg, C. Nylander and I. Lundstrom, Surface Plasmon Resonance for Gas Detection and Biosensing, Sens. Actuators, 4, 299 (1983); https://doi.org/10.1016/0250-6874(83)85036-7.
  4. N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi and H. Marchetto, Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes, Adv. Funct. Mater., 18, 3506 (2008); https://doi.org/10.1002/adfm. 200800951.
  5. A. Bonanni, C.K. Chu, G.J. Zhao, Z. Sofer and M. Pumera, Inherently Electroactive Graphene Oxide Nanoplatelets as Labels for Single Nucleotide Polymorphism Detection, ACS Nano, 6, 8546 (2012); https://doi.org/10.1021/nn301359y.
  6. B. Liu, Z. Sun, X. Zhang and J. Liu, Mechanisms of DNA Sensing on Graphene Oxide, Anal. Chem., 85, 7987 (2013); https://doi.org/10.1021/ac401845p.
  7. N. Dontschuk, A. Stacey, A. Tadich, K.J. Rietwyk, A. Schenk, M.T. Edmonds, O. Shimoni, C.I. Pakes, S. Prawer and J. Cervenka, A Graphene Field-Effect Transistor as a Molecule-Specific Probe of DNA Nucleobases, Nat. Commun., 6, 6563 (2015); https://doi.org/10.1038/ncomms7563.
  8. P. Bollella, G. Fusco, C. Tortolini, G. Sanzo, G. Favero, L. Gorton and R. Antiochia, Beyond Graphene: Electrochemical Sensors and Biosensors for Biomarkers Detection. Biosens. Bioelectron., 89, 152 (2017); https://doi.org/10.1016/j.bios.2016.03.068.
  9. M. Singh, M. Holzinger, M. Tabrizian, S. Winters, N.C. Berner, S. Cosnier and G.S. Duesberg, Noncovalently Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance Immunosensors, J. Am. Chem. Soc., 137, 2800 (2015); https://doi.org/10.1021/ja511512m.
  10. M. Holzinger, A. Le Goff and S. Cosnier, Nanomaterials for Biosensing Applications: A Review. Front. Chem., 2, 63 (2014); https://doi.org/10.3389/fchem.2014.00063.
  11. A. Ambrosi, C.K. Chua, A. Bonanni and M. Pumera, Electrochemistry of Graphene and Related Materials, Chem. Rev., 114, 7150 (2014); https://doi.org/10.1021/cr500023c.
  12. S. Viswanathan, T.N. Narayanan, K. Aran, K.D. Fink, J. Paredes, P.M. Ajayan, S. Filipek, P. Miszta, H.C. Tekin, F. Inci, U. Demirci, P. Li, K.I. Bolotin, D. Liepmann and V. Renugopalakrishanan, Graphene-Protein Field Effect Biosensors: Glucose Sensing, Mater. Today, 18, 513 (2015); https://doi.org/10.1016/j.mattod.2015.04.003.
  13. S. Szunerits, N. Maalouli, E. Wijaya, J.P. Vilcot and R. Boukherroub, Recent Advances in the Development of Graphene-Based Surface Plasmon Resonance (SPR) Interfaces. Anal. Bioanal. Chem., 405, 1435 (2013); https://doi.org/10.1007/s00216-012-6624-0.
  14. J. Kim, L.J. Cote, F. Kim and J. Huang, Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy, J. Am. Chem. Soc., 132, 260 (2010); https://doi.org/10.1021/ja906730d.
  15. B. Sharma, R.R. Frontiera, A.I. Henry, R. Ringe and R.P. Van Duyne, SERS: Materials, Applications, and the Future. Mater. Today, 15, 16 (2012); https://doi.org/10.1016/S1369-7021(12)70017-2.
  16. L. He, Q. Wang, D. Mandler, M. Li and R. Boukherroub and S. Szunerits Detection of Folic Acid Protein in Human Serum Using Reduced Graphene Oxide Electrodes Modified by Folic Acid, Biosens. Bioelectron., 75, 389 (2015); https://doi.org/10.1016/j.bios.2015.08.060.
  17. O. Zagorodko, J. Spadavecchia, A.Y. Serrano, I. Larroulet, A. Pesquera, A. Zurutuza, R. Boukherroub and S. Szunerits, Highly Sensitive Detection of DNA Hybridization on Commercialized Graphene-Coated Surface Plasmon Resonance Interfaces, Anal. Chem., 86, 11211 (2014); https://doi.org/10.1021/ac502705n.
  18. H. Sun, L. Wu, W. Wei and X. Qu, Recent Advances in Graphene Quantum Dots for Sensing, Mater. Today, 16, 433 (2013); https://doi.org/10.1016/j.mattod.2013.10.020.
  19. Y.X. Huang, X.C. Dong, Y. Shi, C.M. Li, L.J. Li and P. Chen, Nano-electronic Biosensors Based on CVD Grown Graphene, Nanoscale, 2, 1485 (2010); https://doi.org/10.1039/c0nr00142b.
  20. X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang and P. Chen, 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection, ACS Nano, 6, 3206 (2012); https://doi.org/10.1021/nn300097q.
  21. Y.-H. Li, L. Zhang, J. Huang, R.P. Liang and J.D. Qiu, Fluorescent Graphene Quantum Dots with a Boronic Acid Appended Bipyridinium Salt to Sense Monosaccharides in Aqueous Solution, Chem. Commun., 49, 5180 (2013); https://doi.org/10.1039/c3cc40652k.
  22. Q. Liu, X. Zhu, Z. Huo, X. He, Y. Liang and M. Xu, Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using PVP/Graphene Modified Electrodes. Talanta, 97, 557 (2012); https://doi.org/10.1016/j.talanta.2012.05.013.
  23. Z.S. Qian, X.Y. Shan, L.J. Chai, J.J. Ma, J.R. Chen and H. Feng, A Universal Fluorescence Sensing Strategy Based on Biocompatible Graphene Quantum Dots and Graphene Oxide for the Detection of DNA, Nanoscale, 6, 5671 (2014); https://doi.org/10.1039/C3NR06583A.
  24. O. Akhavan, E. Ghaderi and R. Rahighi, Toward Single-DNA Electro-chemical Biosensing by Graphene Nanowalls, ACS Nano, 6, 2904 (2012); https://doi.org/10.1021/nn300261t.
  25. C. Zheng, L. Huang, H. Zhang, Z. Sun, Z. Zhang and G.J. Zhang, Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene, ACS Appl. Mater. Interfaces, 7, 16953 (2015); https://doi.org/10.1021/acsami.5b03941.
  26. A. Vasilescu, S. Gáspár, M. Gheorghiu, S. David, V. Dinca, S. Peteu, Q. Wang, M. Li, R. Boukherroub and S. Szunerits, Surface Plasmon Resonance Based Sensing of Lysozyme in Serum on Micrococcus lysodeikticus Modified Graphene Oxide Surfaces, Biosens. Bioelectron., 89, 525 (2017); https://doi.org/10.1016/j.bios.2016.03.040.
  27. L. He, Q. Pagneux, I. Larroulet, A.Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub and S. Szunerits, Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips, Biosens. Bioelectron., 89, 606 (2017); https://doi.org/10.1016/j.bios.2016.01.076.
  28. T. Demeritte, B.P.V. Nellore, R. Kanchanapally, S.S. Sinha, A. Pramanik, S.R. Chavva and C.P. Ray, Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers, ACS Appl. Mater. Interfaces, 7, 13693 (2015); https://doi.org/10.1021/acsami.5b03619.
  29. D.J. Kim, I.Y. Sohn, J.H. Jung, O.J. Yoon, N.E. Lee and J.S. Park, Reduced Graphene Oxide Field-Effect Transistor for Label-free Femtomolar Protein Detection, Biosens. Bioelectron., 41, 621 (2013); https://doi.org/10.1016/j.bios.2012.09.040.
  30. Y.X. Huang, X.C. Dong, Y. Liu, L.J. Li and P. Chen, Graphene-Based Biosensors for Detection of Bacteria and Their Metabolic Activities, J. Mater. Chem., 21, 12358 (2011); https://doi.org/10.1039/c1jm11436k.
  31. P. Subramanian, J. Niedziolka-Jonsson, A. Lesniewski, Q. Wang, M. Li, R. Boukherroub and S. Szunerits, Preparation of Reduced Graphene Oxide–Ni(OH)2 Composites by Electrophoretic Deposition: Application for Non-Enzymatic Glucose Sensing, J. Mater. Chem. A, 2, 5525 (2014); https://doi.org/10.1039/C4TA00123K.
  32. Q. Wang, Q. Wang, M. Li, S. Szunerits and R. Boukherroub, Preparation of Reduced Graphene Oxide/Cu Nanoparticle Composites Through Electrophoretic Deposition: Application for Nonenzymatic Glucose Sensing, RSC Adv., 5, 15861 (2015); https://doi.org/10.1039/C4RA14132F.
  33. H. Maaoui, S.K. Singh, F. Teodoresu, Y. Coffinier, A. Barras, R. Chtourou, S. Kurungot, S. Szunerits and R. Boukherroub, Copper Oxide Supported on Three-dimensional Ammonia-Doped Porous Reduced Graphene Oxide Prepared through Electrophoretic Deposition for Non-Enzymatic Glucose Sensing, Electrochim. Acta, 224, 346 (2017); https://doi.org/10.1016/j.electacta.2016.12.078.
  34. S. Alwarappan, A. Erdem, C. Liu and C.-Z. Li, Probing the Electro-chemical Properties of Graphene Nanosheets for Biosensing Applications, J. Phys. Chem. C, 113, 8853 (2009); https://doi.org/10.1021/jp9010313.
  35. F. Halouane, R. Jijie, D. Meziane, C. Li, S.K. Singh, J. Bouckaert, J. Jurazek, S. Kurungot, A. Barras, M. Li, R. Boukherrouba and S. Szunerits, Selective Isolation and Eradication of E. coli Associated with Urinary Tract Infections using Anti-fimbrial Modified Magnetic Reduced Graphene Oxide Nanoheaters, J. Mater. Chem. B, 5, 8133 (2017); https://doi.org/10.1039/C7TB01890H.
  36. E. Morales-Narvaez, A.R. Hassan and A. Merkoci, Graphene Oxide as a Pathogen-Revealing Agent: Sensing with a Digital-Like Response. Angew. Chem. Int. Ed., 52, 13779 (2013); https://doi.org/10.1002/anie. 201307740.
  37. M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto and M.C.M. McAlpine, Graphene Based Wireless Bacteria Detection on Tooth Enamel, Nat. Commun., 3, 763 (2012); https://doi.org/10.1038/ncomms1767.