Main Article Content
Abstract
Four silver(I) compounds, [Ag(dapn)(dnbc)]n·1.5nH2O (1), [Ag(en)]n- [Ag(dnbc)2]n·2nH2O (2), [Ag(en)]n[Ag(nbc)2]n·2nH2O (3) and [Ag(dapn)]n -(nbc)n·2nH2O (4), where dapn = 1,2-diaminopropane, dnbc = 3,5-dinitrobenzoate, en = 1,2-diaminoethane and nbc = 4-nitrobenzoate, have been synthesized and characterized by X-ray diffraction. The Ag(I) ions show T-shaped coordination geometry in compound 1 but linear coordination geometry in compounds 2, 3 and 4. There are ligandunsupported Ag…Ag interaction in compounds 2 and 3 with Ag…Ag distance of 3.177 ~3.267 Å. All the four complexes showed high cytotoxicity properties.
Keywords
Article Details
Copyright (c) 2019 Suo-Ping Xu, Qian Dong
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- B.J. Hathaway, ed.: G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon: Oxford, vol. 5, pp. 533-591 (1987).
- C.Y. Xu, M.J. Haunden-Smith and T.T. Kodas, Aerosol-Assisted Chemical Vapor Deposition (AACVD) of Binary Alloy (AgxPd1-x, CuxPd1-x, AgxCu1-x) Films and Studies of their Compositional Variation, Chem. Mater., 7, 1539 (1995); https://doi.org/10.1021/cm00056a021.
- M.M.B. Holl, P.F. Seidler, S.P. Kowakzyk and F.R. Mcfeely, Surface Reactivity of Alkylgold(I) Complexes: Substrate-Selective Chemical Vapor Deposition of Gold from RAuP(CH3)3 (R = CH2CH3, CH3) at Remark-ably Low Temperatures, Inorg. Chem., 33, 510 (1994); https://doi.org/10.1021/ic00081a019.
- J.D. Way and R.D. Noble, ed.: W.S.W. Ho and K.K. Strkar, Factlttated Transport, In: Membrane Handbook, Van Nostrand Retnhold: New York (1992).
- C.D.M. Beverwfjk, G.V.D. Kerk, A.J. Leustnk and J.G. Nolter, Organo-silver Chemistry, Organomet. Chem. Rev. A, 5, 215 (1970).
- B.C. Gates, Catalytic Chemistry, Wiley: New York, p. 392 (1991).
- R.A. Van Santen and H.P.C.E. Kuipers, The Mechanism of Ethylene Epoxidation, Adv. Catal., 35, 265 (1987); https://doi.org/10.1016/S0360-0564(08)60095-4.
- C.J. Bertole and C.A. Mims, Dynamic Isotope Tracing: Role of Subsurface Oxygen in Ethylene Epoxidation on Silver, J. Catal., 184, 224 (1999); https://doi.org/10.1006/jcat.1999.2427.
- C.-B. Wang, G. Deo and I.E. Wachs, Interaction of Polycrystalline Silver with Oxygen, Water, Carbon Dioxide, Ethylene, and Methanol: In Situ Raman and Catalytic Studies, J. Phys. Chem. B, 103, 5645 (1999); https://doi.org/10.1021/jp984363l.
- G. J. Miller, J.B. Metson, G.A. Bowmaker and R.P. Coomey, In situ Raman studies of the selective oxidation of methanol to formaldehyde and ethene to ethylene oxide on a polycrystalline silver catalyst, J. Chem. Soc., Faraday Trans., 91, 4149 (1995); https://doi.org/10.1039/FT9959104149.
- J.K. Plischke, A.J. Benesi and M.A. Vannice, A 13C NMR study of ethylene adsorbed on reduced and oxygen-covered ag surfaces, J. Catal., 138, 223 (1992); https://doi.org/10.1016/0021-9517(92)90019-E.
- D.J. Sajkowski and M. Boudart, Structure Sensitivity of the Catalytic Oxidation of Ethene by Silver, Catal. Rev. Sci. Eng., 29, 325 (1987); https://doi.org/10.1080/01614948708078611.
- A. Bielanski and J. Haber, Oxygen in Catalysis, Marcel Dekker: New York, p. 279 (1991).
- H.V.R. Dias and Z. Wang, Ethylene Oxide and Propylene Sulfide Complexes of Silver(I): Synthesis and Characterization of [HB(3,5 (CF3)2Pz)3]Ag(OC2H4) and [HB(3,5-(CF3)2Pz)3]Ag(SC3H6), Inorg. Chem., 39, 3724 (2000); https://doi.org/10.1021/ic991334w.
- I.F. Fieser and M. Fieser, Organic Chemistry, Reinhold: New York, edn 2 (1956).
- A. Yanagisawa, Y. Matsumoto, H. Nakashima, K. Asakawa and H. Yamamoto, Enantioselective Aldol Reaction of Tin Enolates with Aldehydes Catalyzed by BINAP·Silver(I) Complex, J. Am. Chem. Soc., 119, 9319 (1997); https://doi.org/10.1021/ja970203w.
- A. Yanagisawa, H. Nakashima, A. Ishiba, H. Yamarnoto, Catalytic Asymmetric Allylation of Aldehydes Using a Chiral Silver(I) Complex, J. Am. Chem. Soc., 118, 4723 (1996); https://doi.org/10.1021/ja9603315.
- T. Miyadera, Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds, Appl. Catal. B, 2, 199 (1993); https://doi.org/10.1016/0926-3373(93)80048-I.
- K. Masuda, K. Tsujimura, K. Shinoda and T. Kato, Silver-promoted catalyst for removal of nitrogen oxides from emission of diesel engines, Appl. Catal. B, 8, 33 (1996); https://doi.org/10.1016/0926-3373(95)00051-8.
- S. Surniya, H. He, A. Akira, N. Takezawa and K. Yoshida, Formation and Reactivity of Isocyanate (NCO) Species on Ag/Al2O3, J. Chem. Soc., Faraday Trans., 94, 2217 (1998); https://doi.org/10.1039/A801849I.
- F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, Mechanistic Aspects of the Selective Reduction of NO by Propene over Alumina and Silver–Alumina Catalysts, J. Catal., 187 , 493 (1999); https://doi.org/10.1006/jcat.1999.2622.
- H. Deng and P. Kebarle, Binding Energies of Silver Ion”Ligand, L, Complexes AgL2+ Determined from Ligand-Exchange Equilibria in the Gas Phase, J. Phys. Chem. A, 102, 571 (1998); https://doi.org/10.1021/jp973088k.
- V. W.-M. Lee, H. Li, T.-C. Lau, K. W. M. Siu, Structures of b and a Product Ions from the Fragmentation of Argentinated Peptides, J. Am. Chem. Soc., 120, 7302 (1998); https://doi.org/10.1021/ja9808245.
- T. Shoeib, H. El Aribi, K.W.M. Siu and A.C. Hopkinson, A Study of Silver (I) Ion-Organonitrile Complexes: Ion Structures, Binding Energies, and Substituent Effects, J. Phys. Chem. A, 105, 710 (2001); https://doi.org/10.1021/jp002676m.
- R.C. Larock and W.W. Leong, eds.: B.M. Trost and I. Flerning, Comprehensive Organic Synthesis, Pergamon Press: Oxford, U.K., vol. 4, p. 269 (1991).
- K. Yasutaka, M. Osamu and T. Kazuhide, Stereoselective Addition of Alcohol to Acetylenecarboxylate Catalyzed by Silver(I) Salt, Chem. Lett., 25, 727 (1996); https://doi.org/10.1246/cl.1996.727.
- H. Veen, Silver thiosulphate: An Experimental Tool in Plant Science, Sci. Hortic., 20, 211 (1983); https://doi.org/10.1016/0304-4238(83)90001-8.
- R.B. Thurman, C.P. Gerba and G. Bitton, The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses, CRC Crit. Rev. Environ. Control, 18, 295 (1989); https://doi.org/10.1080/10643388909388351.
- R. Lopez-Gonalez, G. Alvarez-Cienfuegos, M.A.Romero-Molina, A. Navarrete-Guijosa and M.M. Herrador-Pino, Synthesis, Molecular Structure Determination, and Biological Studies on E-1-p-ethoxy-phenyl-4-hydroximinomethyl imidazole Metal Complexes, J. Inorg. Biochem., 38, 139 (1990) https://doi.org/10.1016/0162-0134(90)84022-H.
- K. Nomiya, S. Takahashi, R. Noguchi, S. Nernoto, T. Takayama and M. Oda, Synthesis and characterization of water-soluble silver(I) complexes with L-histidine (H2his) and (S)-(-)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and ([Ag(Hpyrrld)]2)n in the solid state, Inorg. Chem., 39, 3301 (2000); https://doi.org/10.1021/ic990526o.
- F.W. Fuller, M. Parrish and F.C. Nance, A review of the dosimetry of 1% silver sulfadiazine cream in burn wound treatment, J. Burn Care Rehabtl., 15 , 213 (1994); https://doi.org/10.1097/00004630-199405000-00003.
- N. Tsipouras, C. J. Rix and P.H. Brady, Passage of silver ions through membrane-mimetic materials, and its relevance to treatment of burn wounds with silver sulfadiazine cream, Clin. Chem., 41, 87 (1995).
- C.S. Chu, A. T. McManus, B. A. Jr. Pruitt and A. D. Mason Jr. Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds., J. Trauma, 28, 1488 (1988).
- G.M. Sheldrick, SHELX-97, Program for Crystal Structure Deter-mination, University of Göttingen: Germany (1997).
- J. Carmichael, W.C. DeGrafp, A.F. Gazdar, J.D. Minna and J.B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 47, 936 (1987).
- B. Rosenberg, L. van Camp, J. E. Trosko and V. H. Mansour, Platinum Compounds: A New Class of Potent Antitumour Agents., Nature, 222, 385(1969); https://doi.org/10.1038/222385a0.
- C.L. Baird, A.E. Griffitts, S. Baffic, P. Bryant, B. Wolf, J. Lutton, M. Berardini and G.M. Arvanitis, Synthesis, characterization and antitumor activity of platinum triamine complexes containing imidazothiazole ligands, Inorg. Chim. Acta, 256 , 253(1997); https://doi.org/10.1016/S0020-1693(96)05453-9.
References
B.J. Hathaway, ed.: G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon: Oxford, vol. 5, pp. 533-591 (1987).
C.Y. Xu, M.J. Haunden-Smith and T.T. Kodas, Aerosol-Assisted Chemical Vapor Deposition (AACVD) of Binary Alloy (AgxPd1-x, CuxPd1-x, AgxCu1-x) Films and Studies of their Compositional Variation, Chem. Mater., 7, 1539 (1995); https://doi.org/10.1021/cm00056a021.
M.M.B. Holl, P.F. Seidler, S.P. Kowakzyk and F.R. Mcfeely, Surface Reactivity of Alkylgold(I) Complexes: Substrate-Selective Chemical Vapor Deposition of Gold from RAuP(CH3)3 (R = CH2CH3, CH3) at Remark-ably Low Temperatures, Inorg. Chem., 33, 510 (1994); https://doi.org/10.1021/ic00081a019.
J.D. Way and R.D. Noble, ed.: W.S.W. Ho and K.K. Strkar, Factlttated Transport, In: Membrane Handbook, Van Nostrand Retnhold: New York (1992).
C.D.M. Beverwfjk, G.V.D. Kerk, A.J. Leustnk and J.G. Nolter, Organo-silver Chemistry, Organomet. Chem. Rev. A, 5, 215 (1970).
B.C. Gates, Catalytic Chemistry, Wiley: New York, p. 392 (1991).
R.A. Van Santen and H.P.C.E. Kuipers, The Mechanism of Ethylene Epoxidation, Adv. Catal., 35, 265 (1987); https://doi.org/10.1016/S0360-0564(08)60095-4.
C.J. Bertole and C.A. Mims, Dynamic Isotope Tracing: Role of Subsurface Oxygen in Ethylene Epoxidation on Silver, J. Catal., 184, 224 (1999); https://doi.org/10.1006/jcat.1999.2427.
C.-B. Wang, G. Deo and I.E. Wachs, Interaction of Polycrystalline Silver with Oxygen, Water, Carbon Dioxide, Ethylene, and Methanol: In Situ Raman and Catalytic Studies, J. Phys. Chem. B, 103, 5645 (1999); https://doi.org/10.1021/jp984363l.
G. J. Miller, J.B. Metson, G.A. Bowmaker and R.P. Coomey, In situ Raman studies of the selective oxidation of methanol to formaldehyde and ethene to ethylene oxide on a polycrystalline silver catalyst, J. Chem. Soc., Faraday Trans., 91, 4149 (1995); https://doi.org/10.1039/FT9959104149.
J.K. Plischke, A.J. Benesi and M.A. Vannice, A 13C NMR study of ethylene adsorbed on reduced and oxygen-covered ag surfaces, J. Catal., 138, 223 (1992); https://doi.org/10.1016/0021-9517(92)90019-E.
D.J. Sajkowski and M. Boudart, Structure Sensitivity of the Catalytic Oxidation of Ethene by Silver, Catal. Rev. Sci. Eng., 29, 325 (1987); https://doi.org/10.1080/01614948708078611.
A. Bielanski and J. Haber, Oxygen in Catalysis, Marcel Dekker: New York, p. 279 (1991).
H.V.R. Dias and Z. Wang, Ethylene Oxide and Propylene Sulfide Complexes of Silver(I): Synthesis and Characterization of [HB(3,5 (CF3)2Pz)3]Ag(OC2H4) and [HB(3,5-(CF3)2Pz)3]Ag(SC3H6), Inorg. Chem., 39, 3724 (2000); https://doi.org/10.1021/ic991334w.
I.F. Fieser and M. Fieser, Organic Chemistry, Reinhold: New York, edn 2 (1956).
A. Yanagisawa, Y. Matsumoto, H. Nakashima, K. Asakawa and H. Yamamoto, Enantioselective Aldol Reaction of Tin Enolates with Aldehydes Catalyzed by BINAP·Silver(I) Complex, J. Am. Chem. Soc., 119, 9319 (1997); https://doi.org/10.1021/ja970203w.
A. Yanagisawa, H. Nakashima, A. Ishiba, H. Yamarnoto, Catalytic Asymmetric Allylation of Aldehydes Using a Chiral Silver(I) Complex, J. Am. Chem. Soc., 118, 4723 (1996); https://doi.org/10.1021/ja9603315.
T. Miyadera, Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds, Appl. Catal. B, 2, 199 (1993); https://doi.org/10.1016/0926-3373(93)80048-I.
K. Masuda, K. Tsujimura, K. Shinoda and T. Kato, Silver-promoted catalyst for removal of nitrogen oxides from emission of diesel engines, Appl. Catal. B, 8, 33 (1996); https://doi.org/10.1016/0926-3373(95)00051-8.
S. Surniya, H. He, A. Akira, N. Takezawa and K. Yoshida, Formation and Reactivity of Isocyanate (NCO) Species on Ag/Al2O3, J. Chem. Soc., Faraday Trans., 94, 2217 (1998); https://doi.org/10.1039/A801849I.
F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, Mechanistic Aspects of the Selective Reduction of NO by Propene over Alumina and Silver–Alumina Catalysts, J. Catal., 187 , 493 (1999); https://doi.org/10.1006/jcat.1999.2622.
H. Deng and P. Kebarle, Binding Energies of Silver Ion”Ligand, L, Complexes AgL2+ Determined from Ligand-Exchange Equilibria in the Gas Phase, J. Phys. Chem. A, 102, 571 (1998); https://doi.org/10.1021/jp973088k.
V. W.-M. Lee, H. Li, T.-C. Lau, K. W. M. Siu, Structures of b and a Product Ions from the Fragmentation of Argentinated Peptides, J. Am. Chem. Soc., 120, 7302 (1998); https://doi.org/10.1021/ja9808245.
T. Shoeib, H. El Aribi, K.W.M. Siu and A.C. Hopkinson, A Study of Silver (I) Ion-Organonitrile Complexes: Ion Structures, Binding Energies, and Substituent Effects, J. Phys. Chem. A, 105, 710 (2001); https://doi.org/10.1021/jp002676m.
R.C. Larock and W.W. Leong, eds.: B.M. Trost and I. Flerning, Comprehensive Organic Synthesis, Pergamon Press: Oxford, U.K., vol. 4, p. 269 (1991).
K. Yasutaka, M. Osamu and T. Kazuhide, Stereoselective Addition of Alcohol to Acetylenecarboxylate Catalyzed by Silver(I) Salt, Chem. Lett., 25, 727 (1996); https://doi.org/10.1246/cl.1996.727.
H. Veen, Silver thiosulphate: An Experimental Tool in Plant Science, Sci. Hortic., 20, 211 (1983); https://doi.org/10.1016/0304-4238(83)90001-8.
R.B. Thurman, C.P. Gerba and G. Bitton, The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses, CRC Crit. Rev. Environ. Control, 18, 295 (1989); https://doi.org/10.1080/10643388909388351.
R. Lopez-Gonalez, G. Alvarez-Cienfuegos, M.A.Romero-Molina, A. Navarrete-Guijosa and M.M. Herrador-Pino, Synthesis, Molecular Structure Determination, and Biological Studies on E-1-p-ethoxy-phenyl-4-hydroximinomethyl imidazole Metal Complexes, J. Inorg. Biochem., 38, 139 (1990) https://doi.org/10.1016/0162-0134(90)84022-H.
K. Nomiya, S. Takahashi, R. Noguchi, S. Nernoto, T. Takayama and M. Oda, Synthesis and characterization of water-soluble silver(I) complexes with L-histidine (H2his) and (S)-(-)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and ([Ag(Hpyrrld)]2)n in the solid state, Inorg. Chem., 39, 3301 (2000); https://doi.org/10.1021/ic990526o.
F.W. Fuller, M. Parrish and F.C. Nance, A review of the dosimetry of 1% silver sulfadiazine cream in burn wound treatment, J. Burn Care Rehabtl., 15 , 213 (1994); https://doi.org/10.1097/00004630-199405000-00003.
N. Tsipouras, C. J. Rix and P.H. Brady, Passage of silver ions through membrane-mimetic materials, and its relevance to treatment of burn wounds with silver sulfadiazine cream, Clin. Chem., 41, 87 (1995).
C.S. Chu, A. T. McManus, B. A. Jr. Pruitt and A. D. Mason Jr. Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds., J. Trauma, 28, 1488 (1988).
G.M. Sheldrick, SHELX-97, Program for Crystal Structure Deter-mination, University of Göttingen: Germany (1997).
J. Carmichael, W.C. DeGrafp, A.F. Gazdar, J.D. Minna and J.B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 47, 936 (1987).
B. Rosenberg, L. van Camp, J. E. Trosko and V. H. Mansour, Platinum Compounds: A New Class of Potent Antitumour Agents., Nature, 222, 385(1969); https://doi.org/10.1038/222385a0.
C.L. Baird, A.E. Griffitts, S. Baffic, P. Bryant, B. Wolf, J. Lutton, M. Berardini and G.M. Arvanitis, Synthesis, characterization and antitumor activity of platinum triamine complexes containing imidazothiazole ligands, Inorg. Chim. Acta, 256 , 253(1997); https://doi.org/10.1016/S0020-1693(96)05453-9.