Main Article Content

Abstract

The present experiment explains the effectiveness of adsorption studies of methylene blue dye from aqueous solutions on activated carbon from Selenicereus grandiflorus (SG) treated with conc. sulfuric acid. The sulphuric acid-treated Selenicereus grandiflorus  activated carbon (SGAC) was used as low-cost adsorbent for the removal of methylene blue dye from aqueous solution. It suggests an ideal alternative method to adsorption of dye compared to other expensive treatment options. The adsorption studies have been  conducted at different experimental parameters, i.e., pH, contact time, adsorbent dose and initial dye concentration. The batch mode experiments were conducted by different adsorbent dose (0.03-0.150 g per 50 mL), pH of the solution (2-12), effect of time (3-18 min), initial dye concentration (10 mg/L), point of zero charge and regeneration of spent adsorbent studies. Langmuir model shows better fit to the equilibrium data (R2 = 0.966) than Freundlich model. The adsorption capacity  (Qm) of SGAC increases with increasing dosage where Qm is 16.17 mg g-1.

Keywords

Point of zero charge Isotherms Kinetics Selenicereus grandiflorus

Article Details

References

  1. A. Rodríguez, G. Ovejero, M. Mestanza and J. García, Dyes Adsorption on Low Cost Adsorbents: Inorganic Materials, Desalination Water Treat., 45, 191 (2012); https://doi.org/10.1080/19443994.2012.692045.
  2. R. Karthik and S. Meenakshi, Adsorption Study on Removal of Cr(VI) ions by Polyaniline Composite, Desalination Water Treat., 54, 3083 (2015); https://doi.org/10.1080/19443994.2014.909330.
  3. S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan and P. Moulin, Landfill leachate Treatment: Review and Opportunity, J. Hazard. Mater., 150, 468 (2008); https://doi.org/10.1016/j.jhazmat.2007.09.077.
  4. F. Montagnaro and L. Santoro, Reuse of Coal Combustion Ashes as Dyes and Heavy Metal Adsorbents: Effect of Sieving and Demineral-ization on Waste Properties and Adsorption Capacity, Chem. Eng. J., 150, 174 (2009); https://doi.org/10.1016/j.cej.2008.12.022.
  5. K.Y. Foo and B.H. Hameed, An Overview of Landfill Leachate Treatment via Activated Carbon Adsorption Process, J. Hazard. Mater., 171, 54 (2009); https://doi.org/10.1016/j.jhazmat.2009.06.038.
  6. H. Wang, H. Gao, M. Chen, X. Xu, X. Wang, C. Pan and J. Gao, Microwave-Assisted Synthesis of Reduced Graphene Oxide/Titania Nanocomposites as an Adsorbent for Methylene Blue Adsorption, Appl. Surf. Sci., 360, 840 (2016); https://doi.org/10.1016/j.apsusc.2015.11.075.
  7. Y. Anjaneyulu, N.S. Chary and D.S. Suman Raj, Decolourization of Industrial Effluents–Available Methods and Emerging Technologies–A Review, Rev. Environ. Sci. Biotechnol., 4, 245 (2005); https://doi.org/10.1007/s11157-005-1246-z.
  8. M Boeningo, Carcinogenicity and Metabolism of Azodyes Especially Derived from Benzidine, Government Printing Office; DNHS (NIOSH) Publication: Washington DC, U.S., pp. 80-119, July (1994).
  9. R.A. Rashid, A.H. Jawad, M.A.M. Ishak and N.N. Kasim, OH-Activated Carbon Developed from Biomass Waste: Adsorption Equilibrium, Kinetic and Thermodynamic Studies for Methylene Blue Uptake, Desalination Water Treat., 57, 27226 (2016); https://doi.org/10.1080/19443994.2016.1167630.
  10. M.J. Ahmed and S.K. Theydan, Physical and Chemical Characteristics of Activated Carbon Prepared by Pyrolysis of Chemically Treated Date Stones and Its Ability to Adsorb Organics, Powder Technol., 229, 237 (2012); https://doi.org/10.1016/j.powtec.2012.06.043.
  11. M.N. Mahamad, M.A.A. Zaini and Z.A. Zakaria, Preparation and Characterization of Activated Carbon from Pineapple Waste Biomass for Dye Removal, Int. Biodeterior. Biodegrad., 102, 274 (2015); https://doi.org/10.1016/j.ibiod.2015.03.009.
  12. N. Nemerow and A. Dasgupta, Industrial and Hazardous Waste Treatment; Van Nostrand Reinhold: New York. vol. 1, p. 001 (1991).
  13. A. Walcarius and L. Mercier, Mesoporous Organosilica Adsorbents: Nanoengineered Materials for Removal of Organic and Inorganic Pollutants, J. Mater. Chem., 20, 4478 (2010); https://doi.org/10.1039/b924316j.
  14. B. Van der Bruggen and C. Vandecasteele, Removal of Pollutants from Surface Water and Groundwater by Nanofiltration: Overview of Possible Applications in the Drinking Water Industry, Environ. Pollut., 122, 435 (2003); https://doi.org/10.1016/S0269-7491(02)00308-1.
  15. L.K. Posey, M.G. Viegas, A.J. Boucher, C. Wang, K.R. Stambaugh, M.M. Smith, B.G. Carpenter, B.L. Bridges, S.E. Baker and D.A. Perry, Surface-Enhanced Vibrational and TPD Study of Nitroaniline Isomers, J. Phys. Chem. C, 111, 12352 (2007); https://doi.org/10.1021/jp071833f.
  16. C.M. Chen and A.C. Lua, Lung Toxicity of Paraquat in the Rat, J. Toxicol. Environ. Health A, 60, 477 (2000); https://doi.org/10.1080/00984100050079548.
  17. B.H. Hameed, A.T.M. Din and A.L. Ahmad, Adsorption of Methylene Blue onto Bamboo-based Activated Carbon: Kinetics and Equilibrium Studies, J. Hazard. Mater., 141, 819 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.049.
  18. B.H. Hameed, A.L. Ahmad and K.N.A. Latiff, Adsorption of Basic Dye (Methylene Blue) onto Activated Carbon Prepared from Rattan Sawdust, Dyes Pigments, 75, 143 (2007); https://doi.org/10.1016/j.dyepig.2006.05.039.
  19. D. Kavitha and C. Namasivayam, Bioresour. Technol., 98, 14 (2007); https://doi.org/10.1016/j.biortech.2005.12.008.
  20. N.H. Mthombeni, M.S. Onyango and O. Aoyi, Adsorption of Hexavalent Chromium onto Magnetic Natural Zeolite-Polymer Composite, J. Taiwan Inst. Chem. Eng., 50, 242 (2015); https://doi.org/10.1016/j.jtice.2014.12.037.
  21. I.A.W. Tan, A.L. Ahmad and B.H. Hameed, Adsorption of Basic Dye on High-Surface-Area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies, J. Hazard. Mater., 154, 337 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.031.
  22. A.H. Jawad, R.A. Rashid, M.A.M. Ishak and L.D. Wilson, Adsorption of Methylene Blue onto Activated Carbon from Biomass Waste by H2SO4 Activation: Kinetic, Equilibrium and Thermodynamic Studies, Desalination Water Treat., 57, 25197 (2016); https://doi.org/10.1080/19443994.2016.1144534.
  23. R.G. Patil and G.K. Nagda, Biosorption of Methylene Blue from Aqueous Solutions by Diospyrous melanoxylon Leaf Waste, Environ. Res. Eng. Manag., 63, 30 (2013); https://doi.org/10.5755/j01.erem.63.1.2735.
  24. H. Lata, V.K. Garg and R.K. Gupta, Removal of a Basic Dye from Aqueous Solution by Adsorption using Parthenium Hysterophorus: An Agricultural Waste, Dyes Pigments, 74, 653 (2007); https://doi.org/10.1016/j.dyepig.2006.04.007.
  25. W. Ma, X. Song, Y. Pan, Z. Cheng, G. Xin, B. Wang and X. Wang, Adsorption Behavior of Crystal Violet onto Opal and Reuse Feasibility of Opal-Dye Sludge for Binding Heavy Metals from Aqueous Solutions, Chem. Eng. J., 193, 381 (2012); https://doi.org/10.1016/j.cej.2012.04.049.
  26. R.H. Hesas, A. Arami-Niya, W.M.A.W. Daud and J.N. Sahu, Preparation and Characterization of Activated Carbon from Apple Waste by Micro-wave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption, BioResources, 8, 2950 (2013).
  27. L.W. Low, T. Tow Teng, A.F.M. Alkarkhi, N. Morad and B. Azahari, Adsorption of Rhodamine B Dye on Elaeis guineensis Frond Fiber, Sep. Sci. Technol., 49, 1104 (2014); https://doi.org/10.1080/01496395.2013.872148.
  28. G.E. Nascimento, M.M.M.B. Duarte, N.F. Campos, O.R.S. Rocha and V.L. Silva, Adsorption of Azo Dyes using Peanut Hull and Orange Peel: A Comparative Study, Environ. Technol., 35, 1436 (2014); https://doi.org/10.1080/09593330.2013.870234.
  29. I.A. Zouboulis, K.N. Lazaridis and K.A. Matis, Removal of Toxic Metal Ions From Aqueous Systems by Biosorptive Flotation, J. Chem. Technol. Biotechnol., 77, 958 (2002); https://doi.org/10.1002/jctb.663.
  30. K. Kadirvelu and C. Namasivayam, Activated Carbon from Coconut Coirpith as Metal Adsorbent: Adsorption of Cd(II) from Aqueous Solution, Adv. Environ. Res., 7, 471 (2003); https://doi.org/10.1016/S1093-0191(02)00018-7.
  31. M. Ghaedi, R. Hassani, K. Dashtian, G. Shafie, M.K. Purkait and H. Dehghan, Adsorption of Methyl Red onto Palladium Nanoparticles Loaded on Activated Carbon: Experimental Design Optimization, Desalination Water Treat., 57, 22646 (2016); https://doi.org/10.1080/19443994.2015.1136963.
  32. L.W. Low, T.T. Teng, N. Morad and B. Azahari, Studies on the Adsorption of Methylene Blue Dye from Aqueous Solution onto Low Cost Tartaric Acid Treated Bagasse, APCBEE Procedia, 1, 103 (2012); https://doi.org/10.1016/j.apcbee.2012.03.018.
  33. R. Ahmad and P.K. Mondal, Application of Acid Treated Almond Peel for Removal and Recovery of Brilliant Green from Industrial Waste-water by Column Operation, Sep. Sci. Technol., 44, 1638 (2009); https://doi.org/10.1080/01496390902775836.
  34. H. Hasar, Adsorption of Nickel(II) from Aqueous Solution onto Activated Carbon Prepared from Almond Husk, J. Hazard. Mater., 97, 49 (2003); https://doi.org/10.1016/S0304-3894(02)00237-6.
  35. Ö. Gerçel, A. Özcan, A.S. Özcan and H.F. Gerçel, Preparation of Activated Carbon from a Renewable Bio-Plant of Euphorbia rigida By H2SO4 Activation and its Adsorption Behaviour in Aqueous Solutions, Appl. Surf. Sci., 253, 4843 (2007); https://doi.org/10.1016/j.apsusc.2006.10.053.
  36. S. Karagoz, T. Tay, S. Ucar and M. Erdem, Activated Carbons from Waste Biomass by Sulfuric Acid Activation and their Use on Methylene Blue Adsorption, Bioresour. Technol., 99, 6214 (2008); https://doi.org/10.1016/j.biortech.2007.12.019.
  37. N. Sharma, D.P. Tiwari and S.K. Singh, The Efficiency Appraisal for Removal of Malachite Green by Potato peel and Neem Bark: Isotherm and Kinetic Studies, Int. J. Chem. Environ. Eng., 5, 83 (2014).
  38. K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani and S. Pattabhi, Utilization of Various Agricultural Wastes for Activated Carbon Preparation and Application for the Removal of Dyes and Metal Ions from Aqueous Solutions, Bioresour. Technol., 87, 129 (2003); https://doi.org/10.1016/S0960-8524(02)00201-8.
  39. L.W. Low, T.T. Teng, A. Ahmad, N. Morad and Y.S. Wong, A Novel Pretreatment Method of Lignocellulosic Material as Adsorbent and Kinetic Study of Dye Waste Adsorption, Water Air Soil Pollut., 218, 293 (2011); https://doi.org/10.1007/s11270-010-0642-3.