Main Article Content

Abstract

A delivery system of insecticides induces active ingredient having desirable for pest control and nanotechnology may be improve of pesticide efficiency. Chlropyrofos as an organophosphate insecticide is used to control many different type of agricultural pest such as termites, mosquitoes, cockroaches. Termites, one of the important pests, cause a lot of damages to many field of agricultutre and in the south of Iran, subterranean termite, is popularly damages many products. In this research, chlropyrofos was loaded onto poly(ethylene glycol) and chitosan decorated nanoparticles (silver/PEG/Cts NPs) and evaluated its insecticidal (termiticide) study. Silver nitrate was used as the silver source and chitosan and PEG were used as the polymeric supporter and stabilizer and chlropyrofos as insecticide. The developed Ag/PEG/Cts NPs-chlropyrofos were then characterized by a UV-VIS spectrophotometer, Fourier transform infrared, transmission electron microscope, confirmed the formation of spherical nanoparticles with the size of 15-25 nm. The insecticidal activity of nanoparticle was tested in vitro against termite (Microcerotermes gabrielis W. (Isoptera: Termitidae)). The result showed the effectiveness of the target nanoparticles after 48 h at 50 ppm on the insects.

Keywords

Amino acid Ultrasound Aqueous media Cavitation

Article Details

References

  1. K. Sriroth, P. Kuakoon, S. Kunruedee and C. Oates, Paper Presented at Xth International Starch Convention, Cracow, Poland, pp 2-14 (2002).
  2. X.M. Qian and S.M. Nie, Single-Molecule and Single-Nanoparticle SERS: From Fundamental Mechanisms to Biomedical Applications, Chem. Soc. Rev., 37, 912 (2008); https://doi.org/10.1039/b708839f.
  3. V.D. Ahmadi and B.H. Alizadeh, Nanopesticides: Synthesis and Appli-cation of Nanosphare Structures, Bull. Soc. R. Sci. Liege, 86, 845 (2017); https://doi.org/10.25518/0037-9565.7026.
  4. M. Kah, S. Beulke, K. Tiede and T. Hofmann, Nanopesticides: State of Knowledge, Environmental Fate and Exposure Modeling, Crit. Rev. Environ. Sci. Technol., 43, 1823 (2013); https://doi.org/10.1080/10643389.2012.671750.
  5. S. Navaladian, B. Viswanathan, R.P. Viswanath and T.K. Varadarajan, Thermal decomposition as Route for Silver Nanoparticles, Nanoscale Res. Lett., 2, 44 (2007); https://doi.org/10.1007/s11671-006-9028-2.
  6. B.H. Feng and L.F. Peng, Synthesis and Characterization of Carboxy-methyl Chitosan Carrying Ricinoleic Functions as an Emulsifier for Azadirachtin, Carbohydr. Polym., 88, 576 (2012); https://doi.org/10.1016/j.carbpol.2012.01.002.
  7. R.C. Hayward, D.A. Saville and I.A. Aksay, Electrophoretic Assembly of Colloidal Crystals with Optically Tunable Micropatterns, Nature, 404, 56 (2000); https://doi.org/10.1038/35003530.
  8. R. Mohamed and H. Al-Kazafy, Int. J. Environ. Sci. Technol., 3, 2528 (2014).
  9. F.L. Yang, X.G. Li, F. Zhu and C.L. Lei, Structural Characterization of Nanoparticles Loaded with Garlic Essential Oil and their Insecticidal Activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrio-nidae), J. Agric. Food Chem., 57, 10156 (2009); https://doi.org/10.1021/jf9023118.
  10. J. Zhang, M. Li, T. Fan, Q. Xu, Y. Wu, C. Chen and Q. Huang, Constru-ction of Novel Amphiphilic Chitosan Copolymer Nanoparticles for Chlorpyrifos Delivery, J. Polym. Res., 20, 107 (2013); https://doi.org/10.1007/s10965-013-0107-7.
  11. J. Kumar, N.A. Shakil, M.K. Singh, Pankaj, M.K. Singh, A. Pandey and R.P. Pandey, Development of Controlled Release Formulations of Azadirachtin-A Employing Poly(ethylene glycol) Based Amphiphilic Copolymers, J. Environ. Sci. Health B, 45, 310 (2010); https://doi.org/10.1080/03601231003704457.
  12. Y. Liu, P. Laks and P. Heiden, Controlled Release of Biocides in Solid Wood. II. Efficacy Against Trametes versicolor and Gloeophyllum trabeum Wood Decay Fungi, J. Appl. Polym. Sci., 86, 608 (2002); https://doi.org/10.1002/app.10897.
  13. A. Sooresh, H. Kwon, R. Taylor, P. Pietrantonio, M. Pine and C.M. Sayes, Surface Functionalization of Silver Nanoparticles: Novel Applications for Insect Vector Control, ACS Appl. Mater. Interfaces, 3, 3779 (2011); https://doi.org/10.1021/am201167v.
  14. D.I. Gittins, D. Bethell, R.J. Nichols and D.J. Schiffrin, Diode-Like Electron Transfer Across Nanostructured Films Containing a Redox Ligand, J. Mater. Chem., 10, 79 (2000); https://doi.org/10.1039/a902960e.
  15. C.C. Tingle, J.A. Rother, C.F. Dewhurst, S. Lauer and W. King, Fipronil: Environmental Fate, Ecotoxicology, and Human Health Concerns, J. Rev. Environ. Contam. Toxicol., 176, 1 (2003); https://doi.org/10.1007/978-1-4899-7283-5_1.
  16. C.D.S. Tomlin, A World Compendium: The Pesticide Manual, British Crop Protection Council, edn 12 (2004).
  17. W.E. Smith, Practical Understanding and Use of Surface Enhanced Raman Scattering/Surface Enhanced Resonance Raman Scattering in Chemical and Biological Analysis, Chem. Soc. Rev., 37, 955 (2008); https://doi.org/10.1039/b708841h.
  18. Y. Murali Mohan, K. Lee, T. Premkumar and K.E. Geckeler, Hydrogel Networks as Nanoreactors: A Novel Approach to Silver Nanoparticles for Antibacterial Applications, Polymer, 48, 158 (2007); https://doi.org/10.1016/j.polymer.2006.10.045.
  19. X.L. Cao, C. Cheng, Y.L. Ma and C.S. Zhao, Preparation of Silver Nanoparticles with Antimicrobial Activities and the Researches of their Biocompatibilities, J. Mater. Sci. Mater. Med., 21, 2861 (2010); https://doi.org/10.1007/s10856-010-4133-2.
  20. H.Z. Huang, Q. Yuan and X.R. Yang, Preparation and Characterization of Metal-Chitosan Nanocomposites, Colloids Surf. B Biointerfaces, 39, 31 (2004); https://doi.org/10.1016/j.colsurfb.2004.08.014.
  21. P. Raveendran, J. Fu and S.L. Wallen, Completely “Green” Synthesis and Stabilization of Metal Nanoparticles, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j.
  22. K. Shameli, M.B. Ahmad, W.M.Z.W. Yunus, A. Rustaiyan, N.A. Ibrahim, M. Zargar and Y. Abdollahi, Green Synthesis of Silver/Montmorillonite/Chitosan Bionanocomposites using The UV Irradiation method and Evaluation of Antibacterial Activity, Int. J. Nanomed., 5, 875 (2010); https://doi.org/10.2147/IJN.S13632.
  23. D. Wei, W. Sun, W. Qian, Y. Ye and X. Ma, The Synthesis of Chitosan-Based Silver Nanoparticles and their Antibacterial Activity, Carbohydr. Res., 344, 2375 (2009); https://doi.org/10.1016/j.carres.2009.09.001.
  24. S.H. Sun, E.E. Fullerton, D. Weller and C.B. Murray, Compositionally Controlled FePt Nanoparticle Materials, IEEE Trans. Magn., 37, 1239 (2001); https://doi.org/10.1109/20.950807.
  25. M. Zhu, Y. Zhu, L. Zhang and J. Shi, Preparation of Chitosan/Meso-porous Silica Nanoparticle Composite Hydrogels for Sustained Co Delivery of Biomacromolecules and Small Chemical Drugs, Sci. Technol. Adv. Mater., 14, 045005 (2013); https://doi.org/10.1088/1468-6996/14/4/045005.
  26. P. Pimpang, W. Sutham, N. Mangkorntong, P. Mangkorntong and S. Choopun, Effect of Stabilizer on Preparation of Silver and Gold Nano-particle Using Grinding Method, Chiang Mai J. Sci., 35, 250 (2008).
  27. L. Ilium, Chitosan and Its Use as a Pharmaceutical Excipient, Pharm. Res., 15, 1326 (1998); https://doi.org/10.1023/A:1011929016601.
  28. B. Akbari, M.P. Tavandashti and M. Zandrahimi, Particle Size Charact-erization of Nanoparticles-A Practical Approach, Iran. J. Mater. Sci. Eng., 8, 48 (2011).
  29. V.K. Sharma, R.A. Yngard and Y. Lin, Silver Nanoparticles: Green Synthesis and their Antimicrobial Activities, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002.
  30. K. Shameli, M.M. Bin Ahmad, W.Z. Yunis, N.A. Ibrahim, Z. Mohsen, P. Shabanzadeh and M.G. Moghaddam, Synthesis and Characterization of Silver/Montmorillonite/Chitosan Bionanocomposites by Chemical Reduction Method and their Antibacterial Activity, Int. J. Nanomed., 6, 271 (2011); https://doi.org/10.2147/IJN.S16043.
  31. S. Hamedi, S. Masumeh, S. Shojaosadati and S. Soheila, Comparative Study on Silver Nanoparticles Properties Produced by Green Methods, Iranian J. Biotechnol., 10, 191 (2012).
  32. K. Veerakumar, M. Govindarajan, M. Rajeswary and U. Muthukumaran, Mosquito Larvicidal Properties of Silver Nanoparticles Synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae)., Parasitol. Res., 113, 2363 (2014); https://doi.org/10.1007/s00436-014-3895-8.
  33. N.E. Ihegwuagu, R. Sha’Ato, T.A. Tor-Anyiin, L.A. Nnamonu, P. Buekes, B. Sone and M. Maaza, Facile Formulation of Starch-Silver Nanoparticle Encapsulated Dichlorvos and Chlorpyrifos for Enhanced Insecticide Delivery, New J. Chem., 40, 1777 (2016); https://doi.org/10.1039/C5NJ01831E.