Main Article Content

Abstract

An all-electron scalar relativistic calculation on CunZn (n = 1-12) clusters has been performed by using density functional theory (DFT) with the generalized gradient approximation (GGA) at PW91 level. Present results showed that the lowest energy geometry of CunZn (n = 1, 3, 4, 6-12) clusters can be generated by substituting Zn atom for one Cu atom of Cun+1 cluster and add Zn to Cun cluster. The ground state structures of Cu2Zn and Cu5Zn clusters vary significantly. Due to their electronic structure, Cu2Zn is linear structure and Cu5Zn is three-dimensional structure, but Cu3 and Cu6 are planar structures. Compared with the corresponding pure Cun+1 cluster, the lowest energy geometry of CunZn cluster is slightly distorted. Cu-Zn bond in CunZn clusters is weaker than Cu-Cu bond in pure Cun+1 clusters, and most of the Cu-Cu bonds far from Zn atoms in CunZn clusters are strong than Cu-Cu bond in pure Cun+1 clusters. After doping with Zn atoms, the second-order difference of energy for Cun clusters produces a significant parity conversion phenomenon.

Keywords

Copper cluster Scalar relativistic calculation DFT catalytic property

Article Details

References

  1. G.D. Stein, Atoms and Molecules in Small Aggregates. The Fifth State of Matter, Phys. Teacher, 17, 503 (1979).
  2. X.J. Kuang, X.Q. Wang and G.B. Liu, A Density Functional Study on the Adsorption of Hydrogen Molecule onto Small Copper Clusters, J. Chem. Sci., 123, 743 (2011); https://doi.org/10.1007/s12039-011-0130-3.
  3. X.J. Kuang, X.Q. Wang and G.B. Liu, All-Electron Relativistic Calculations on Hydrogen Atom Adsorption onto Small Copper Clusters, Transition Met. Chem., 35, 841 (2010); https://doi.org/10.1007/s11243-010-9402-x.
  4. K. Jug, B. Zimmermann, P. Calaminici and A.M. Köster, Structure and Stability of Small Copper Clusters, J. Chem. Phys., 116, 4497 (2002); https://doi.org/10.1063/1.1436465.
  5. Y. Wang, G. Wu, M. Yang and J. Wang, Competition between Eley-Rideal and Langmuir-Hinshelwood Pathways of CO Oxidation on Cun and CunO (n = 6, 7) Clusters, J. Phys. Chem. C, 117, 8767 (2013); https://doi.org/10.1021/jp3122775.
  6. G. Guzmanramirez, F. Aguileragranja and J. Robles, DFT Study of the Fragmentation Channels and Electronic Properties of Cunn (n = ±1,0,2; n = 3-13) Clusters, Eur. Phys. J. D, 57, 335 (2010); https://doi.org/10.1140/epjd/e2010-00059-x.
  7. K. Iokibe, H. Tachikawa and K. Azumi, A DFT Study on the Structures and Electronic States of Zinc Cluster Znn (n = 2-32), J. Phys. B, 40, 427 (2007); https://doi.org/10.1088/0953-4075/40/2/015.
  8. J. Wang, G. Wang and J. Zhao, Nonmetal-Metal Transition in Znn (n = 2-20) Clusters, Phys. Rev. A, 68, 013201 (2003); https://doi.org/10.1103/PhysRevA.68.013201.
  9. O. Kostko, G. Wrigge, O. Cheshnovsky and B. Issendorff, Transition from a Bloch-Wilson to a Free-Electron Density of States in Znn Clusters, J. Chem. Phys., 123, 221102 (2005); https://doi.org/10.1063/1.2138689.
  10. W. Ling, D. Dong, W. Shijian and Z. Zheng-Quan, Geometrical, Electronic and Magnetic Properties of CunFe (n = 1-12) Clusters: A Density Functional Study, J. Phys. Chem. Solids, 76, 10 (2015); https://doi.org/10.1016/j.jpcs.2014.07.022.
  11. P.A. Derosa, J.M. Seminario and P.B. Balbuena, Properties of Small Bimetallic Ni-Cu Clusters, J. Phys. Chem. A, 105, 7917 (2001); https://doi.org/10.1021/jp0104637.
  12. B. Yin, Y. Yin, Y. Lei, L. Dong and Y. Zhang, Experimental and Density Functional Studies on the Corrosion Behavior of the Copper Nickel-Tin Alloy, Chem. Phys. Lett., 509, 192 (2011); https://doi.org/10.1016/j.cplett.2011.04.100.
  13. X. Dong, L. Guo, C. Wen, N. Ren, Z. Cao, N. Liu and L.L. Guo, Mechanism of CO Preferential Oxidation Catalyzed by CuPt (n = 3-12): A DFT Study, Res. Chem. Intermed., 41, 10049 (2015); https://doi.org/10.1007/s11164-015-2012-7.
  14. X. Zheng, L. Guo, W. Li, Z. Cao, N. Liu, Y. Shi and J. Guo, The Catalytic Performance of CunAu (n = 3-12) Clusters for Preferential Oxidation of CO in Hydrogen-Rich Stream, Theor. Chem. Acc., 136, 33 (2017); https://doi.org/10.1007/s00214-017-2062-6.
  15. I. Efremenko and M. Sheintuch, DFT Study of Small Bimetallic Palladium-Copper Clusters, Chem. Phys. Lett., 401, 232 (2005);
  16. https://doi.org/10.1016/j.cplett.2004.11.057.
  17. J. Yuan, B. Yang, G. Li, Y. Si, S. Wang, S. Zhang and H. Chen, Geom-etries and Electronic Properties of Bimetallic CuVn (n = 1-5) Clusters and their Cations: Insight from Density Functional Calculations, Comput. Mater. Sci., 102, 213 (2015); https://doi.org/10.1016/j.commatsci.2015.02.037.
  18. Z.-Y. Jiang, K.-H. Lee, S.-T. Li and S.-Y. Chu, Structures and Charge Distributions of Cationic and Neutral Cun-1Ag Clusters (n = 2-8), Phys. Rev. B, 73, 235423 (2006) https://doi.org/10.1103/PhysRevB.73.235423.
  19. Q.-L. Tang, X.-X. Duan, B. Liu, A.-Q. Wei, S.-L. Liu, Q. Wang, Y.-P. Liang and X.-H. Ma, A Density Functional Study on Properties of a Cu3Zn Material and CO Adsorption Onto its Surfaces, Appl. Surf. Sci., 363, 128 (2016); https://doi.org/10.1016/j.apsusc.2015.12.007.
  20. S.N. Khan and M. Eisenbach, Density-Functional Monte-Carlo Simulation of CuZn Order-Disorder Transition, Phys. Rev. B, 93, 024203 (2016); https://doi.org/10.1103/PhysRevB.93.024203.
  21. H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans and P. Lievens, Density Functional Study on Structure and Stability of Bimetallic AuNZn (N £ 6) Clusters and their Cations, J. Chem. Phys., 119, 7115 (2003); https://doi.org/10.1063/1.1606431.
  22. H.Q. Wang, X.Y. Kuang and H.F. Li, Structural, Electronic and Magnetic Properties of Gold Cluster Anions Doped with Zinc: AunZn- (2 £ n £ 10), J. Phys. Chem. A, 113, 14022 (2009); https://doi.org/10.1021/jp908084u.
  23. H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans and P. Lievens, s Aromaticity of the Bimetallic Au5Zn+ Cluster, J. Am. Chem. Soc., 125, 2862 (2003); https://doi.org/10.1021/ja029157c.
  24. J.M. Wu and W.T. Kao, Heterojunction Nanowires of AgxZn1–xO-ZnO Photocatalytic and Antibacterial Activities under Visible-Light and Dark Conditions, J. Phys. Chem. C, 119, 1433 (2015); https://doi.org/10.1021/jp510259j.
  25. E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans and P. Lievens, Two-Dimensional Magic Numbers in Mass Abundances of Photofrag-mented Bimetallic Clusters, New J. Chem., 5, 46 (2003).
  26. B. Delley, An All Electron Numerical Method for Solving The Local Density Functional for Polyatomic Molecules, J. Chem. Phys., 92, 508 (1990); https://doi.org/10.1063/1.458452.
  27. B. Delley, From Molecules to Solids with the DMol3 Approach, J. Chem. Phys., 113, 7756 (2000); https://doi.org/10.1063/1.1316015.
  28. J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 45, 13244 (1992); https://doi.org/10.1103/PhysRevB.45.13244.
  29. B. Delley, Hardness Conserving Semilocal Pseudopotentials, Phys. Rev. B, 66, 155125 (2002); https://doi.org/10.1103/PhysRevB.66.155125.
  30. G.H. Guvelioglu, P. Ma, X. He, R.C. Forrey and H. Cheng, First Princi-ples Studies on the Growth of Small Cu Clusters and the Dissociative Chemisorption of H2, Phys. Rev. B, 73, 155436 (2006); https://doi.org/10.1103/PhysRevB.73.155436.
  31. G.H. Guvelioglu, P. Ma, X. He, R.C. Forrey and H. Cheng, Evolution of Small Copper Clusters and Dissociative Chemisorption of Hydrogen, Phys. Rev. Lett., 94, 026103 (2005); https://doi.org/10.1103/PhysRevLett.94.026103.
  32. S. Wang, J. Lu, Z.P. Liu and K.N. Fan, Proper Choice of XC Functionals and Calculations of Fluorescence-Emitting Energies for Coumarin Derivatives, Acta Chim. Sin., 23, 1831 (2007); https://doi.org/10.1016/S1872-1508(07)60086-2.
  33. C. Feng, X. Ai-Guo, Z. Guang-Cai, G. Yan-Biao, C. Tao and L. Ying-Jun, Highly Efficient Lattice Boltzmann Model for Compressible Fluids: Two-Dimensional Case, Commum. Theor. Phys., 52, 681 (2009); https://doi.org/10.1088/0253-6102/52/4/25.
  34. X.J. Kuang, X.Q. Wang and G.B. Liu, All-Electron Scalar Relativistic Calculation of the Adsorption of NCO Species Onto Small Copper Clusters, J. Iran. Chem. Soc., 8, 750 (2011); https://doi.org/10.1007/BF03245906.
  35. P.B. Balbuena, P.A. Derosa and J.M. Seminario, Density Functional Theory Study of Copper Clusters, J. Phys. Chem. B, 103, 2830 (1999); https://doi.org/10.1021/jp982775o.
  36. W. Hong-Yan, L. Chao-Yang, T. Yong-Jian and Z. Zheng-He, Geometry and Electronic Properties of Cun (n £ 9), Chin. Phys., 13, 677 (2004); https://doi.org/10.1088/1009-1963/13/5/018.
  37. K. Baishya, J.C. Idrobo, S. Ogut, M. Yang, K.A. Jackson and J. Jellinek, First-Principles Absorption Spectra of Cun ( n = 2 - 20 ) Clusters, Phys. Rev. B, 83, 245402 (2011); https://doi.org/10.1103/PhysRevB.83.245402.
  38. R.S. Ram, C.N. Jarman and P.F. Bernath, Fourier Transform Emission Spectroscopy of the Copper Dimer, J. Mol. Spectrosc., 156, 468 (1992); https://doi.org/10.1016/0022-2852(92)90247-L.
  39. M.D. Morse, Clusters of Transition-Metal Atoms, Chem. Rev., 86, 1049 (1986); https://doi.org/10.1021/cr00076a005.