Main Article Content

Abstract

In this paper, a comparative study of Mn3O4/PbS and CuO/PbS nanocomposites deposited by chemical bath deposition method has been made using X-ray diffraction, scanning electron microscope, Rutherford back scattering, UV-visible spectroscopy and four point probe techniques. Structure of both nanocomposites were observed by XRD technique. The crystallite size for Mn3O4/PbS and CuO/ PbS nanocrystalline films were found to be 34.86 nm and 19.14 nm, respectively. The surface morphology of both composites were observed by SEM technique. Mn3O4/PbS films showed non-uniform irregular spherical particles spread across the substrate surface, whereas CuO/PbS thin films showed uniform grains with dense structure which are well covered to the substrate with rod like structure. Both films have high absorbance exhibiting a maximum in the UV region. The direct band gaps of 3.90 and 3.95 eV were observed for Mn3O4/PbS and CuO/PbS films, respectively. The wide band gap values are in the range suitable for use as window materials in solar cell fabrication and high frequency applications.

Keywords

Mn3O4/PbS CuO/PbS Grain size Band gap Nanocomposites

Article Details

References

  1. P. Nemec, I. Nemec, P. Nahálková, K. Knízek and P. Malý, Ammonia Free Chemical Bath Deposition of CdS Films: Tailoring The Nanocrystal Sizes, J. Cryst. Growth, 240, 484 (2002); https://doi.org/10.1016/S0022-0248(02)00930-2.
  2. G. Korotcenkov, Chemical Sensors: Nanostructured Materials, Momentum Press: New York (2010).
  3. R. Chandran, Ph.D. Thesis, Synthesis and Characterization of Metal Chalcogenide Nanocrystalline Films, Department of Physics, Annamalai University, India (2011).
  4. M. Quinten, Optical Properties of Nanoparticle Systems, Wiley-VCH, (2011).
  5. M. Ben-Ishai and F. Patolsky, A Route to High-Quality Crystalline Coaxial Core/Multishell Ge@Si(GeSi)n and Si@(GeSi)n Nanowire Hetero-structures, Adv. Mater., 22, 902 (2010); https://doi.org/10.1002/adma.200902815.
  6. Y. Wu, J. Xiang, C. Yang, W. Lu and C.M. Lieber, Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures, Nature, 430, 61 (2004); https://doi.org/10.1038/nature02674.
  7. P.Y. Keng, M.M. Bull, I.B. Shim, K.G. Nebesny, N.R. Armstrong, Y. Sung, K. Char and J. Pyun, Colloidal Polymerization of Polymer Coated Ferromagnetic Cobalt Nanoparticles into Pt-Co3O4 Nanowires, Chem. Mater., 23, 1120 (2011); https://doi.org/10.1021/cm102319d.
  8. C. Koenigsmann, A.C. Santulli, K.P. Gong, M.B. Vukmirovic, W.P. Zhou, E. Sutter, S.S. Wong and R.R. Adzic, Enhanced Electrocatalytic Perfor-mance of Processed, Ultrathin, Supported Pd-Pt Core-Shell Nanowire Catalysts for the Oxygen Reduction Reaction, J. Am. Chem. Soc., 133, 9783 (2011); https://doi.org/10.1021/ja111130t.
  9. Y.L. Chueh, I.J. Chou and Z.L. Wang, SiO2/Ta2O5 Core-Shell Nanowires and Nanotubes, Angew. Chem., 45, 7773 (2006); https://doi.org/10.1002/anie.200602228.
  10. R. Liu and S.B. Lee, MnO2/Poly(3,4-ethylenedioxythiophene) Coaxial Nanowires by One-Step Co-Electrodeposition for Electrochemical Energy Storage, J. Am. Chem. Soc., 130, 2942 (2008); https://doi.org/10.1021/ja7112382.
  11. P. Kundu, P.A. Deshpande, G. Madras and W. Ravishankar, Nanoscale ZnO/CdS Heterostructure with Engineered Interfaces for High Photo-catalytic Activity under Solar Radiation, J. Mater. Chem., 21, 4209 (2011); https://doi.org/10.1039/c0jm03116j.
  12. T. Ghrib, M.A. Al-Messiere and A.L. Al-Otaibi, Synthesis and Characterization of ZnO/ZnS Core-Shell Nanowires, J. Nanomater., Article ID 989632 (2014); https://doi.org/10.1155/2014/989632.
  13. Z. Braiek, A. Brayek, M. Ghoul, S. Ben Taieb, M. Gannouni, I. Ben Assaker, A. Souissi and R. Chtourou, Electrochemical Synthesis of ZnO/In2S3 Core-Shell Nanowires for Enhanced Photoelectrochemical Properties, J. Alloys Compd., 653, 395 (2015); https://doi.org/10.1016/j.jallcom.2015.08.204.
  14. C. Augustine, M.N. Nnabuchi, F.N.C. Anyaegbunam and A.N. Nwachukwu, Study of the Effects of Thermal Annealing on Some Selected Properties of Heterojunction PbS-NiO Core-Shell Thin Film, Dig. J. Nanomater. Biostruct., 12, 523 (2017).
  15. C. Augustine and M.N. Nnabuchi, Band Gap Determination of Novel PbS-NiO-CdO Heterojunction Thin Film for Possible Solar Energy Applications, J. Ovonic Res., 13, 233 (2017).
  16. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedure for Poly-crystalline and Armophous Materials, Wiley: New York (1974).
  17. H. Jensen, J.H. Pedersen, J.E. Jorgensen, J.S. Pedersen, K.D. Joensen, S.B. Iversen and E.G. Sogaard, Determination of Size Distributions in Nanosized Powders by TEM, XRD and SAXS, J. Exp. Nanosci., 1, 355 (2006); https://doi.org/10.1080/17458080600752482.
  18. K.O. Ovid’ko, Interfaces and Misfit Defects in Nanostructured and Polycrystalline Films, Rev. Adv. Mater. Sci., 1, 61 (2000).
  19. T. Soga, Fundamentals of Solar Cell Nanostructured Materials for Solar Energy Conversion, Elsevier: UK, pp. 3-4 (2006).
  20. M.N. Nnabuchi, Bandgap and Optical Properties of Chemical Bath Deposited Magnesium Sulphide (MgS) Thin Films, Pacific J. Sci. Technol., 6, 105 (2005).
  21. C.D. Lokhande, B.R. Sankapal, S. Mane, H.M. Pathan, M. Muller, M. Giersig and V. Ganesan, XRD, SEM, AFM, HRTEM, EDAX and RBS Studies of Chemically Deposited Sb2S3 and Sb2Se3 Thin Films, Appl. Surf. Sci., 193, 1 (2002); https://doi.org/10.1016/S0169-4332(01)00819-4.
  22. H.Y. Xu, S. Xu, H. Wang and H. Yan, Characterization of Hausmannite Mn3O4 Thin Films by Chemical Bath Deposition, J. Electrochem. Soc., 152, C803 (2005); https://doi.org/10.1149/1.2098267.
  23. C. Ulutas, O. Erken, M. Gunes and C. Gumus, Effect of Annealing Temperature on the Physical Properties of Mn3O4 Thin Film Prepared By Chemical Bath Deposition, Int. J. Electrochem. Sci., 11, 2835 (2016); https://doi.org/10.20964/110402835.
  24. S.S. Shariffudin, S.S. Khalid, N.M. Sahat, M.S.P. Sarah and H. Hashim, Preparation and Characterization of Nanostructured CuO Thin Films using Sol-Gel Dip Coating, IOP Conf. Series Mater. Sci. Eng., 99, 012007 (2015); https://doi.org/10.1088/1757-899X/99/1/012007.
  25. K.S. Wanjala, W.K. Njoroge, N.E. Makori and J.M. Ngaruiya, Optical and Electrical Characterization of CuO Thin Films as Absorber Materials for Solar Cell Applications, Am. J. Conden. Matter Phys., 6, 1 (2016); https://doi.org/10.5923/j.ajcmp.20160601.01.
  26. J.I. Pankove, Optical Processes in Semiconductors, Prentice-Hall: New York (1971).
  27. C.C. Uhuegbu, Ph.D Thesis, Growth and Characterization of Ternary Chalcogenide Thin Films for Efficient Solar Cells and Possible Industrial Applications, Department of Physics, Covenant University, Ota, Ogun State, Nigeria (2007).
  28. P.E. Agbo and M.N. Nnabuchi, Core-Shell TiO2/ZnO Thin Film: Preparation, Characterization and Effect of Temperature on Some Selected Properties, Chalcogenide Lett., 8, 273 (2011).
  29. P.E. Agbo, Refractive Index and Dielectric Properties of TiO2/CuO Core-Shell Thin Films, Chem. Mater. Res., 6, 42 (2014).
  30. C.E. Ekuma, M.N. Nnabuchi, E. Osarolube, E.O. Chukwuocha and M.C. Onyeaju, Optoelectronic Characterization of Chemical Bath Deposited CdxCo1-xS Thin Film, J. Mod. Phys., 2, 992 (2011); https://doi.org/10.4236/jmp.2011.29119.