Main Article Content

Abstract

An organic NLO material viz., mono-urea oxalic acid (MUOA) crystal was synthesized and grown as the single crystal by slow  vaporation
technique using the double distilled water as the solvent. The grown crystal was transparent, colourless and the size of the crystal was about 14 mm × 17 mm × 7 mm obtained within a period of 30 days. The grown crystal was subjected to various studies like XRD, microhardness, linear optical studies, SHG studies and Z-scan studies. The mono-urea oxalic acid crystals crystallize in monoclinic  structure with a centrosymmetric space group. This crystal gives out SHG emission even though it is a centrosymmetric crystal. The  mechanical parameters like hardness, work hardening coefficient, yield strength and stiffness constant were evaluated. UV-visible  spectrum was recorded in the wavelength range of 190-1100 nm to find the linear optical parameters like transmittance, band gap, absorption coefficient and extinction coefficient. Third order NLO studies were carried out by Z-scan technique to find non-linear absorption coefficient, nonlinear refractive index and non-linear susceptibility. 

Keywords

Crystal growth Single crystal XRD NLO Transmittance Hardness Z-scan Extinction coefficient Stiffness constant

Article Details

References

  1. K. Meera, R. Muralidharan, R. Dhanasekaran, P. Manyum and P. Ramasamy, Growth of Nonlinear Optical Material: L-Arginine Hydro chloride and Its Characterisation, J. Cryst. Growth, 263, 510 (2004); https://doi.org/10.1016/j.jcrysgro.2003.11.093.
  2. C. Krishnan, P. Selvarajan, T.H. Freeda and C.K. Mahadevan, Growth and Characterization of Pure and Potassium Iodide-Doped Zinc Tris-Thiourea Sulphate (ZTS) Single Crystals, Physica B, 404, 289 (2009); https://doi.org/10.1016/j.physb.2008.10.053.
  3. K. Ambujam, K. Rajarajan, S. Selvakumar, J. Madhavan, G. Mohamed and P. Sagayaraj, Growth and Characterization of Gel Grown Single Crystals of Bis-Glycine Hydrogen Chloride (BGHC), Opt. Mater., 29, 657 (2007); https://doi.org/10.1016/j.optmat.2005.11.008.
  4. P. Gunter, Non-linear Optical Effects and Materials, Springer-Verlag: Germany (2000).
  5. D. Sajan, N. Vijayan, K. Safakath, R. Philip and I.H. Joe, Intramolecular Charge Transfer and Z-Scan Studies of a Semiorganic Nonlinear Optical Material Sodium Acid Phthalate Hemihydrate: A Vibrational Spectro-scopic Study, J. Phys. Chem. A, 115, 8216 (2011); https://doi.org/10.1021/jp201818y.
  6. G.S. Murugan, N. Balamurugan and P. Ramasamy, Growth and Charac-terization of a New Metal-Organic Crystal: Bis-Thiourea Cobalt Chloride (BTCoC), Mater. Lett., 62, 3087 (2008); https://doi.org/10.1016/j.matlet.2008.01.137.
  7. K. Nithya, B. Karthikeyan, G. Ramasamy, S.P. Meenakshisundaram and K. Muthu, Growth and Characterization of Fe3+-Doped Bis(thiourea)-zinc(II) Chloride Crystals, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 1648 (2011); https://doi.org/10.1016/j.saa.2011.05.029.
  8. M. Shakir, S.K. Kushwaha, K.K. Maurya, G. Bhagavannarayana and M. Arora, Growth and Characterization of Glycine Picrate Remarkable Second-Harmonic Generation in Centrosymmetric Crystal, J. Cryst. Growth, 311, 3871 (2009); https://doi.org/10.1016/j.jcrysgro.2009.06.007.
  9. K.E. Rieckhoff and W.L. Peticolas, Optical Second-Harmonic Generation in Crystalline Amino Acids, Science, 147, 610 (1965); https://doi.org/10.1126/science.147.3658.610.
  10. H.Y. Chen, Q. Fang, H. Lei, W.-T. Yu, X.-F. Cheng and Z.-Q. Liu, Structures and Nonlinear Optical Properties of Molecular Crystals DMCC and DBCC, J. Mol. Struct., 871, 1 (2007); https://doi.org/10.1016/j.molstruc.2007.01.041.
  11. Z. Lin, Z. Wang, C. Chen and M.-H. Lee, Mechanism of Linear and Non-linear Optical Effects of KDP and Urea Crystals, J. Chem. Phys., 118, 2349 (2003); https://doi.org/10.1063/1.1533734.
  12. J.M. Halbout, S. Blit, W. Donaldson and C. Tang, Efficient Phase-Matched Second-Harmonic Generation and Sum-Frequency Mixing in Urea, Quantum Electron., 15, 1176 (1979); https://doi.org/10.1109/JQE.1979.1069900.
  13. W.R. Donaldson and C.L. Tang, Urea Optical Parametric Oscillator, Appl. Phys. Lett., 44, 25 (1984); https://doi.org/10.1063/1.94590.
  14. T. Rajalakshmi, R. Dhanasekaran and P. Ramasamy, The Growth and Perfection of Urea Single Crystals from Solution, J. Mater. Sci. Lett., 12, 1797 (1993); https://doi.org/10.1007/BF00517615.
  15. K. Chadwick, R. Davey, G. Sadiq, W. Cross and R. Pritchard, The Growth and Perfection of Urea Single Crystals from Solution, CrystEngComm, 11, 412 (2009); https://doi.org/10.1039/b818268j.
  16. F.Q. Meng, M.K. Lu, Z.H. Yang and H. Zeng, Thermal and Crystallo-graphic Properties of a New NLO Material, Urea-(d) Tartaric Acid Single Crystal, Mater. Lett., 33, 265 (1998); https://doi.org/10.1016/S0167-577X(97)00113-4.
  17. E. de Matos Gomes, V. Venkataramanan, E. Nogueira, M. Belsley, F. Proença, A. Criado, M.J. Dianez, M.D. Estrada and S. Perez Garrido, Synthesis, Crystal Growth and Characterisation of a New Nonlinear Optical Material Urea L-Malic Acid, Synth. Met., 115, 225 (2000); https://doi.org/10.1016/S0379-6779(00)00339-8.
  18. S. Krishnan, C.J. Raj and S.J. Das, Growth and Characterization of Novel Ferroelectric Urea-Succinic Acid Single Crystals, J. Crystal Growth, 310, 3313 (2008); https://doi.org/10.1016/j.jcrysgro.2008.03.039.
  19. S. Harkema and J.H.M. Ter Brake, Structure and Thermal Expansion of Urea-Oxalic Acid (1:1), Acta Crystallogr., 35, 1011 (1979); https://doi.org/10.1107/S0567740879005446.
  20. S. Harkema, J.W. Bats, A.M. Weyenberg and D. Feil, The Crystal Structure of Urea Oxalic Acid (2:1), Acta Crystallogr. B, 28, 1646 (1972); https://doi.org/10.1107/S0567740872004789.
  21. R. Dhivya, R.E. Vizhi and D.R. Babu, Investigation on Nucleation Kinetics, Growth and Characterization of Urea Oxalic Acid-ferroelec tric Single Crystal, J. Cryst. Growth, 468, 84 (2016); https://doi.org/10.1016/j.jcrysgro.2016.12.045.
  22. J.M. Linet and S.J. Das, Investigations on Growth Morphology, Bulk Growth and Crystalline Perfection of L-Threonine, An Organic Non-Linear Optical Material, Physica B, 45, 3955 (2010); https://doi.org/10.1016/j.physb.2010.06.037.
  23. T. Balakrishnan and K. Ramamurthi, Growth, Structural, Optical, Thermal and Mechanical Properties of Glycine Zinc Chloride Single Crystal, Mater. Lett., 62, 65 (2008); https://doi.org/10.1016/j.matlet.2007.04.072.
  24. E. Meyer and Z. Ver, Application of Automated Ball Indentation for Property Measurement of Degraded Zr2.5Nb, Deut. Ing., 52, 645 (1908).
  25. C. Hays and E.G. Kendall, An Analysis of Knoop Microhardness, Metallo-graphy, 6, 275 (1973); https://doi.org/10.1016/0026-0800(73)90053-0.
  26. S. Suresh, A. Ramanand and D. Jayaraman, Mechanical Properties of L-Valine Single Crystals, Optoelectron. Adv. Mater. Rapid Commun., 4, 1987 (2010).
  27. W.A. Wooster, Physical Properties and Atomic Arrangements in Crystals, Rep. Prog. Phys., 16, 62 (1953); https://doi.org/10.1088/0034-4885/16/1/302.
  28. J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press: New York (1974).
  29. B.K. Periyasamy, R.S. Jebas, N. Gopalakrishnan and T. Balasubramanian, Development of NLO Tunable Band Gap Organic Devices for Optoelec-tronic Applications, Mater. Lett., 61, 4246 (2007); https://doi.org/10.1016/j.matlet.2007.01.105.
  30. J. John, P. Christuraj, K. Anitha and T. Balasubramanian, Band Gap Enhancement on Metal Chelation: Growth and Characterization of Cobalt Chelated Glycine Single Crystals for Optoelectronic Applications, Mater. Chem. Phys., 118, 284 (2009); https://doi.org/10.1016/j.matchemphys.2009.07.061.
  31. S.K. Kurtz and T.T. Perry, A Powder Technique for the Evaluation of Non-linear Optical Materials, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
  32. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan and E.W. Van Stryland, Sensitive Measurement of Optical Nonlinearities Using a Single Beam, IEEE J. Quantum Electron., 26, 760 (1990); https://doi.org/10.1109/3.53394.
  33. M. Sheik-bahae, A.A. Said and E.W. Van Stryland, High-Sensitivity, Single-Beam n2 Measurements, Opt. Lett., 14, 955 (1989); https://doi.org/10.1364/OL.14.000955.
  34. A.A. Said, T. Xia, D.J. Hagan, E.W. Van Stryland and M. Sheik-Bahae, Nonlinear Absorption and Refraction in CuCl at 532 nm, J. Opt. Soc. Am. B, 14, 824 (1997); https://doi.org/10.1364/JOSAB.14.000824.
  35. S. Saltiel, S. Tanev and A.D. Boardman, High-Order Nonlinear Phase Shift Caused by Cascaded Third-Order Processes, Opt. Lett., 22, 148 (1997); https://doi.org/10.1364/OL.22.000148.
  36. M.K. Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana and R.M. Kumar, Studies of the Structural and Third-Order Nonlinear Optical Properties of Solution Grown 4-Hydroxy-3-Methoxy-4¢-N¢-Methylstilbazolium Tosylate Monohydrate Crystals, Opt. Mater., 36, 988 (2014); https://doi.org/10.1016/j.optmat.2014.01.007.
  37. F.Q. Li, N. Zong, F.F. Zhang, J. Yang, F. Yang, Q.J. Peng, D.F. Cui, J.Y. Zhang, X.Y. Wang, C.T. Chen and Z.Y. Xu, Investigation of Third Order Optical Nonlinearity in KBe2BO3F2 Crystal By Z-Scan, Appl. Phys. B, 108, 301 (2012); https://doi.org/10.1007/s00340-012-4985-x.
  38. K. Naseema, M. Shyma, K.B. Manjunatha, A. Muralidharan, G. Umesh and V. Rao, c(3) Measurement and Optical Limiting Studies of Urea Picrate, Opt. Laser Technol., 43, 1286 (2011); https://doi.org/10.1016/j.optlastec.2011.03.025