Main Article Content

Abstract

This work reports the interactions of an analogue of baclofen® (A-BF) with β-cyclodextrin and the calculation of stability constant (K) of inclusion complex using UV-visible spectroscopy. 0.1 M solutions of a steady concentration of baclofen® and varying concentrations of (β-cyclodextrin) were prepared in water. The final β-cyclodextrin solutions concentrations ranged between 0.0 and 0.00019 M. Each solution was examined at 202 nm. Absorbances were recorded and plotted against cyclodextrin concentrations. From the plot, the concentrations of both free and bound baclofen® and free β-cyclodextrin were calculated by using the Bensi-Hildebrand method. Then stability constant K was calculated. The magnitude of the stability constant is discussed and the stoichiometry of inclusion complex was determined by means of Job's plot.

Keywords

β-Cyclodextrin Inclusion complex Baclofen® analogues Alcoholic.

Article Details

References

  1. J.V. Basmajian, Lioresal (Baclofen) Treatment of Spasticity in Multiple Sclerosis, Am. J. Phys. Med., 54, 175 (1975).
  2. K.G. Heinzerling, S. Shoptaw, J.A. Peck, X. Yang, J. Liu, J. Roll and W. Ling, Randomized, Placebo-Controlled Trial of Baclofen and Gabapentin for the Treatment of Methamphetamine Dependence, Drug Alcohol Depend., 85, 177 (2006); https://doi.org/10.1016/j.drugalcdep.2006.03.019.
  3. W. Ling, S. Shoptaw and D. Majewska, Baclofen as a Cocaine Anti-Craving Medication: A Preliminary Clinical Study, Neuropsychopharmacology, 18, 403 (1998); https://doi.org/10.1016/S0893-133X(97)00128-0.
  4. G. Addolorato, F. Caputo, E. Capristo, M. Domenicali, M. Bernardi, L. Janiri, R. Agabio, G. Colombo, G.L. Gessa and G. Gasbarrini, Baclofen Efficacy in Reducing Alcohol Craving and Intake: A Preliminary Double-Blind Randomized Controlled Study, Alcohol Alcohol., 37, 504 (2002); https://doi.org/10.1093/alcalc/37.5.504.
  5. G. Addolorato, F. Caputo, E. Capristo, G. Colombo, G.L. Gessa and G. Gasbarrini, Ability of Baclofen in Reducing Alcohol Craving and Intake: II-Preliminary Clinical Evidence, Alcohol Clin. Exp. Res., 24, 67 (2000).
  6. R. Agabio, P. Marras, G. Addolorato, B. Carpiniello and G.L. Gessa, Baclofen Suppresses Alcohol Intake and Craving for Alcohol in a Schizophrenic Alcohol-Dependent Patient: A Case Report, J. Clin. Psychopharmacol., 27, 319 (2007); https://doi.org/10.1097/01.jcp.0000270079.84758.fe.
  7. O. Ameisen, Le Dernier Verre, Edition: Denoël, p. 298 (2008).
  8. P.G. Loubser and N.M. Akman, Effects of Intrathecal Baclofen on Chronic Spinal Cord Injury Pain, J. Pain Symptom Manage., 12, 241 (1996); https://doi.org/10.1016/0885-3924(96)00152-2.
  9. J.B. Van Bree, C.D. Heijligers-Feijen, A.G. de Boer, M. Danhof and D. Breimer, Stereoselective Transport of Baclofen Across the Blood Brain Barrier in Rats as Determined by Unit Impulse Response Methodology, Pharm. Res., 8, 259 (1991); https://doi.org/10.1023/A:1015812725011.
  10. Y. Deguchi, K. Inabe, K. Tomiyasu, K. Nozawa, S. Yamada and R. Kimura, Study on Brain Interstitial Fluid Distribution and Blood-Brain Barrier Transport of Baclofen in Rats by Microdialysis, Pharm. Res., 12, 1838 (1995); https://doi.org/10.1023/A:1016263032765.
  11. V. Rizzi, S. Matera, P. Semeraro, P. Fini and P. Cosma, Interactions between 4-Thiothymidine and Water-Soluble Cyclodextrins: Evidence for Supramolecular Structures in Aqueous Solutions, Beilstein J. Org. Chem., 12, 549 (2016); https://doi.org/10.3762/bjoc.12.54.
  12. G. Wenz and E. Monflier, Superstructures with Cyclodextrins: Chemistry and Applications III, Beilstein J. Org. Chem., 12, 937 (2016); https://doi.org/10.3762/bjoc.12.91.
  13. G. Costantino, A. Macchiarulo, A.E. Guadix and R. Pellicciari, QSAR and Molecular Modeling Studies of Baclofen Analogues as GABAB Agonists. Insights into the Role of Aromatic Moiety in GABAB Binding and Activation, J. Med. Chem., 44, 1827 (2001); https://doi.org/10.1021/jm0100133.
  14. R. Chênevert and M. Desjardins, Chemoenzymatic Enantioselective Synthesis of Baclofen, Can. J. Chem., 72, 2312 (1994); https://doi.org/10.1139/v94-294.
  15. E.J. Corey and F.Y. Zhang, Enantioselective Michael Addition of Nitro-methane to a,b-Enones Catalyzed by Chiral Quaternary Ammonium Salts. A Simple Synthesis of (R)-Baclofen, Org. Lett., 2, 4257 (2000); https://doi.org/10.1021/ol0068344.
  16. W. Froestl, S.J. Mickel, G. von Sprecher, P.J. Diel, R.G. Hall, L. Maier, D. Strub, V. Melillo and P.A. Baumann, Phosphinic Acid Analogs of GABA. 2. Selective, Orally Active GABAB Antagonists, J. Med. Chem., 38, 3313 (1995); https://doi.org/10.1021/jm00017a016.
  17. M. Attia, C. Herdeis and H. Bräuner-Osborne, GABAB-Agonistic Activity of Certain Baclofen Homologues, Molecules, 18, 10266 (2013); https://doi.org/10.3390/molecules180910266.
  18. T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto, Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea, J. Am. Chem. Soc., 127, 119 (2005); https://doi.org/10.1021/ja044370p.
  19. C. Alstermark, K. Amin, T. Elebring, O. Fjellström, K. Fitzpatrick, S.R. Dinn, W.B. Geiss, J. Gottfries, P.R. Guzzo, J.P. Harding, A. Holmén, M. Kothare, A. Lehmann, J.P. Mattsson, K. Nilsson, G. Sundén, M. Swanson, S. von Unge, A.M. Woo, M.J. Wyle and X. Zheng, Synthesis and Pharmacological Evaluation of Novel g-Aminobutyric Acid Type B (GABAB) Receptor Agonists as Gastroesophageal Reflux Inhibitors, J. Med. Chem., 51, 4315 (2008); https://doi.org/10.1021/jm701425k.
  20. K.L. Jensen, P.H. Poulsen, S. Donslund, F. Morana and K. Jørgensen, Asymmetric Synthesis of g-Nitroesters by an Organocatalytic One-Pot Strategy, Org. Lett., 14, 1516 (2012); https://doi.org/10.1021/ol3002514.
  21. R. Karla, B. Ebert, C. Thorkildsen, C. Herdeis, T.N. Johansen, B. Nielsen and P. Krogsgaard-Larsen, Synthesis and Pharmacology of the Baclofen Homologues 5-Amino-4-(4-chlorophenyl)pentanoic Acid and R- and S-Enantiomers of 5-Amino-3-(4-chlorophenyl)pentanoic Acid, J. Med. Chem., 42, 2053 (1999); https://doi.org/10.1021/jm990076+.
  22. J.K. Mulengi and A. Slimani-Keniche, A Bit of Chemistry with Aziridines and Applications, LAP LAMBERT Academic Publishing, p. 80 (2016).
  23. A. Mezrai, D. Lesur, A. Wadouachi, F. Pilard and J.K. Mulengi, The Synthesis of Glucoconjugate of Peptidic Fragment of Cryptophycin-24, Mediterr. J. Chem., 3, 935 (2014); https://doi.org/10.13171/mjc.3.4.2014.04.07.15.
  24. A. Keniche, S. Bellifa, H. Hassaine, M.Z. Slimani and J.K. Mulengi, Evaluation of Antibacterial Activities of Novel Aziridinyl Phosphonates, Alg. J. Nat. Prod., 4, 226 (2016).
  25. S. Muñoz-Botella, B. del Castillo and M.A. Martyn, Cyclodextrin Properties and Applications of Inclusion Complex Formation, Acta Pharm., 36, 187 (1995).
  26. T. Loftsson and M.E. Brewster, Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization, J. Pharm. Sci., 85, 1017 (1996); https://doi.org/10.1021/js950534b.
  27. K.J. Naidoo, J.Y.-J. Chen, J.L.M. Jansson, G. Widmalm and A. Maliniak, Molecular Properties Related to the Anomalous Solubility of b Cyclo-dextrin, J. Phys. Chem. B, 108, 4236 (2004); https://doi.org/10.1021/jp037704q.
  28. R. Singh, N. Bharti, J. Madan and S.N. Hiremath, Characterization of Cyclodextrin Inclusion Complexes-A Review, J. Pharm. Sci. Technol., 2, 171 (2010).
  29. A. Keniche, M.Z. Slimani, J.I. Miranda, J.M. Aizpurua and J.K. Mulengi, NMR Investigation of the Complexation of (S)-2-Isopropyl-1-(o nitrophenyl)sulfonyl)aziridine with b-Cyclodextrin, Mediterr. J. Chem., 2, 620 (2013); https://doi.org/10.13171/mjc.2.5.2013.01.12.23.
  30. N. Li, Y.-H. Zhang, Y.-N. Wu, X.-L. Xiong and Y.-H. Zhang, Inclusion Complex of Trimethoprim with b-cyclodextrin, J. Pharm. Biomed. Anal., 39, 824 (2005); https://doi.org/10.1016/j.jpba.2005.05.011.
  31. H.A. Benesi and J.H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030.
  32. V. Laine, A. Coste-Sarguet, A. Gadelle, J. Defaye, B. Perly and F. Djedaïni-Pilard, Inclusion and Solubilization Properties of 6-S Glycosyl-6-thio Derivatives of b-Cyclodextrin, J. Chem. Soc. Perkin Trans. II, 1479 (1995); https://doi.org/10.1039/P29950001479.
  33. A. Keniche, W. Drici, M.Z. Slimani, A. Mezrai and J.K. Mulengi, 1,3-Dipolar Cycloaddition of Azomethine Ylide from Phtaloylimidophenyl-alanyl-2-Hydroxymethylaziridine, Mediter. J. Chem., 2, 583 (2013); https://doi.org/10.13171/mjc.2.4.2013.07.09.12.
  34. M.N. Roy, S. Saha, S. Barman and D. Ekka, Host-Guest Inclusion Complexes of RNA Nucleosides Inside Aqueous Cyclodextrins Explored by Physicochemical and Spectroscopic Methods, RSC Adv., 6, 8881 (2016); https://doi.org/10.1039/C5RA24102B.
  35. B. Li, W. Zhang and H. Ma, Physicochemical Characterization of Inclusion Complex of Catechin and Glucosyl-ß-Cyclodextrin, Trop. J. Pharm. Res., 15, 167 (2016); https://doi.org/10.4314/tjpr.v15i1.23.
  36. M. Kfoury, D. Landy, S. Ruellan, L. Auezova, H. Greige-Gerges and S. Fourmentin, Determination of Formation Constants and Structural Characterization of Cyclodextrin Inclusion Complexes with Two Phenolic Isomers: Carvacrol and Thymol, Beilstein J. Org. Chem., 12, 29 (2016); https://doi.org/10.3762/bjoc.12.5.