Main Article Content

Abstract

The ability of hen egg membrane which is an agricultural waste used to remove metanil yellow, a toxic dye from simulated wastewater, in a fixed-bed column was investigated. The effects of varying influent dye concentration (Co), adsorbent mass (m) and flow rate (Q), at pH 3 and temperature 29 °C on biosorption capacity (qe) of the membrane were investigated. Experimental data were modelled with Langmuir, Freundlich and Temkin isotherm as well as Thomas, Yoon-Nelson and Clark kinetic models. Results show that biosorption capacity, increased with increase in dye concentration, increase in flow rate and decrease in adsorbent mass. Saturation of the biosorbent could not be reached in 8 h, Co 100 mg/g, m 2g and Q 15 mL/min were optimum. Analysis of experimental data with Langmuir, Freundlich and Temkin, as well as Thomas, Yoon-Nelson and Clark models, showed them to be good fits based on correlation coefficient values, R2, which were generally above 0.9. This study shows hen egg membrane to be a potential biosorbent for treating anionic - dye polluted wastewaters. 

Keywords

Biosorption capacity Egg membrane Fixed-bed column Kinetic models Metanil yellow

Article Details

References

  1. M.O. Harhay, Am. J. Public Health, 101, 1348 (2011); https://doi.org/10.2105/AJPH.2011.300277.
  2. J.T. Nwabanne and P.K. Igbokwe, Int. J. Appl. Sci. Technol., 2, 106 (2012).
  3. E.N. El-Qada, S.J. Allen and G.M. Walker, Chem. Eng. J., 124, 103 (2006); https://doi.org/10.1016/j.cej.2006.08.015.
  4. R. Sivashankar, V. Sivasubramanian, A.B. Sathya and S. Pallipad, Proceedings of the International Conference on Future Trends in Structural, Civil, Environmental and Mechanical Engineering: Institute of Research Engineers and Doctors, pp. 153-157 (2013).
  5. G. Crini, Bioresour. Technol., 97, 1061 (2006); https://doi.org/10.1016/j.biortech.2005.05.001.
  6. R. Jain, N. Sharma and K. Radhapyari, Eur. Water, 27/28, 43 (2009).
  7. A.A. Ahmad and B.H. Hameed, J. Hazard. Mater., 175, 298 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.003.
  8. P. D. Rocha, A. S. Franca and L. S. Oliveira, IACSIT Int. J. Eng. Technol., 7, 459 (2015); https://doi.org/10.7763/IJET.2015.V7.837.
  9. W.-T. Tsai, K.-J. Hsien, H.-C. Hsu, C.-M. Lin, K.-Y. Lin and C.-H. Chiu, Bioresour. Technol., 99, 1623 (2008); https://doi.org/10.1016/j.biortech.2007.04.010.
  10. B. Koumanova, P. Peeva, S.J. Allen, K.A. Gallagher and M.G. Healy, J. Chem. Technol. Biotechnol., 77, 539 (2002); https://doi.org/10.1002/jctb.601.
  11. A.A. Hassan and Z.A. Salih, J. Agric. Sci., 5, 11 (2013).
  12. N. Pramanpol and N. Nitayapat, Kasetsart J. (Nat. Sci.), 40(suppl.), 192 (2006).
  13. M.A. Yousif, A.A. Atia, O.F. Zaid and I.A. Ibrahim, J. Dispers. Sci. Technol., 36, 1628 (2015); https://doi.org/10.1080/01932691.2014.988346.
  14. Z. Tong, P. Zheng, B. Bai, H. Wang and Y. Suo, Catalysts, 6, 58 (2016); https://doi.org/10.3390/catal6040058.
  15. B.O. Isiuku, M. Horsfall Jnr. and A.I. Spiff, Res. J. Appl. Sci., 9, 201 (2014).
  16. B.O. Isiuku and C.N. Nwosu, Asian J. Chem., 29, 475 (2017); https://doi.org/10.14233/ajchem.2017.20181.
  17. V.O. Njoku, A.A. Ayuk, E.E. Oguzie and E.N. Ejike, Sep. Sci. Technol., 47, 753 (2012); https://doi.org/10.1080/01496395.2011.626829.
  18. E.I. Unuabonah, B.I. Olu-Owolabi, E. Fasuyi and K.O. Adebowale, J. Hazard. Mater., 179, 415 (2010); https://doi.org/10.1016/j.jhazmat.2010.03.020.
  19. L. Markovska, V. Meshko and V. Noveski, Korean J. Chem. Eng., 18, 190 (2001); https://doi.org/10.1007/BF02698458.
  20. I. Mobasherpour, E. Salahi and A. Asjodi, Can. Chem. Trans., 2, 83 (2014); https://doi.org/10.13179/canchemtrans.2014.02.01.0059.
  21. N. Gopal, M. Asaithambi, P. Sivakumar and V. Sivakumar, Indian J. Chem. Technol., 23, 53 (2016).
  22. Association of Official Analytical Chemists (AOAC), Official Methods of Analysis, Arlington, VA, edn 15 (1990).
  23. O.B. Isiuku, M. Horsfall Jnr. and A.I. Spiff, J. Eng. Appl. Sci., 8, 282 (2013).
  24. O.S. Bello, O.M. Adelaide, M.A. Hameed and O.A.M. Popoola, Maced. J. Chem. Chem. Eng., 29, 77 (2010); https://doi.org/10.20450/mjcce.2010.181.
  25. P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh and T.S.A. Singh, J. Urban Environ. Eng., 6, 18 (2012); https://doi.org/10.4090/juee.2012.v6n1.018029.
  26. O.S. Bello, T.A. Fatona, F.S. Falaye, O.M. Osuolale and V.O. Njoku, Environ. Eng. Sci., 29, 186 (2012); https://doi.org/10.1089/ees.2010.0385.
  27. M. Dutta, J.K. Basu, M.H. Faraz, N. Gautam and A. Kumar, Arch. Appl. Sci. Res., 4, 882 (2012).
  28. R. Pelech, E. Milchert and M. Bartkowiak, J. Colloid Interface Sci., 296, 458 (2006); https://doi.org/10.1016/j.jcis.2005.09.020.
  29. Y. Fu and T. Viraraghavan, Water S.A., 29, 465 (2003).
  30. J.M. Salman, V.O. Njoku and B.H. Hameed, Chem. Eng. J., 174, 33 (2011); https://doi.org/10.1016/j.cej.2011.08.024.
  31. H. Patel and R.T. Vashi, Can. J. Chem. Eng., 90, 180 (2012); https://doi.org/10.1002/cjce.20518.
  32. D.H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw-Hill Book Company (UK) Ltd., edn 3 (1980).
  33. I.L. Finar, Organic Chemistry, The Fundamental Principles, Longman Group Ltd., edn 6, vol. 1, p. 207 (1973).
  34. I.L. Finar, Organic Chemistry, ELBS, Longman Group Ltd., edn 5, vol. 2, pp. 651, 660 (1975).
  35. R. Han, Y. Wang, W. Yu, W. Zou, J. Shi and H. Liu, J. Hazard. Mater., 141, 713 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.031.
  36. R. Han, J. Zhang, W. Zou, H. Xiao, J. Shi and H. Liu, J. Hazard. Mater., 133, 262 (2006); https://doi.org/10.1016/j.jhazmat.2005.10.019.
  37. A.H. Al-Fatlawi and M.M. Neamah, Int. J. Adv. Res. Sci. Eng. Technol., 2, 557 (2015).
  38. K. Baek, S. Song, S. Kang, Y. Rhee, C. Lee, B. Lee, S. Hudson and T. Hwang, J. Ind. Eng. Chem., 13, 452 (2007).
  39. T. Depci, A.L. Kul, Y. Onal, E. Disli, S. Alkan and Z.F. Turkmenoglu, Physicochem. Probl. Miner. Proces., 48, 253 (2012).