Main Article Content

Abstract

This study presents the Run Octane Number (RON) analysis of gasoline obtained from catalytic cracking of n-hexadecane using composite fluid catalytic cracking (FCC) catalyst. Composite FCC catalyst was formulated using as-synthesized zeolite Y and ZSM-5  anchored on support matrix made of activated alumina, metakaolin and silica sol. The as-prepared catalyst was characterized using X-ray diffraction, the composite catalyst performance at 400, 500 and 550 ºC were 53.07, 73.17 and 88.85 %, respectively. The gasoline produced at 400 ºC had paraffinic content of 53 %, olefin and aromatic content of 47 %. The gasoline produced at 500 ºC had paraffinic content of 39 % olefin and aromatic content of 43 % while the gasoline produced at 550 ºC had paraffinic content of 36 % olefin and aromatic content of 44 %. The gasoline obtained at 400 ºC had the least RON value of 51.47 % whereas those obtained at 500 and 550 ºC had RON values of 85.39 and 87.38 %, respectively. This study has shown that the optimum operating temperature was 500 ºC and incorporation of ZSM-5 in FCC catalyst formulation improved the catalyst performance.

Keywords

Zeolite Y ZSM-5 Fluid catalytic cracking catalyst Catalytic cracking Catalytic performance Run octane number

Article Details

References

  1. B. Dudley, BP Energy Outlook 2030, British Petroleum Plc., London, January issue (2013).
  2. A. Galadima and O. Muraza, J. Ind. Eng. Chem., 31, 1 (2015); https://doi.org/10.1016/j.jiec.2015.07.015.
  3. T. W. David, AU J. Technol., 11, 36 (2007).
  4. H. Abou-Yousef and E.B. Hassan, J. Ind. Eng. Chem., 20, 1952 (2014); https://doi.org/10.1016/j.jiec.2013.09.016.
  5. F.E. Trigueiro, D.F.J. Monteiro, F.M.Z. Zotin and E. Falabella Sousa-Aguiar, J. Alloys Comp., 344, 337 (2002); https://doi.org/10.1016/S0925-8388(02)00381-X.
  6. D. Mravec, J. Hudec, and H. Janotka, Chem. Pap., 59, 62 (2005).
  7. Y. Zhao, Z. Liu, W. Li, Y. Zhao, H. Pan, Y. Liu, M. Li, L. Kong and M. He, Micropor. Mesopor. Mater., 167, 102 (2013); https://doi.org/10.1016/j.micromeso.2012.03.016.
  8. A.R. Massah, R.J. Kalbasi, M. Khalifesoltani and F.M. Kordesofla, ISRN Org. Chem., Article ID 951749 (2013); https://doi.org/10.1155/2013/951749.
  9. R. Xu, J. Chen, Z. Gao and W. Yan, From Zeolites to Porous MOF Materials-The 40th Anniversary of International Zeolite Conference Elsevier, vol. 1, pp. 168-414 (2007).
  10. W. Chen, D. Han, X. Sun and C. Li, Fuel, 106, 498 (2013); https://doi.org/10.1016/j.fuel.2012.12.090.
  11. L.T.H. Nam, T.Q. Vinh, N.T.T. Loan, V.D.S. Tho, V. Yang and B. Su, Fuel, 90, 1069 (2011); https://doi.org/10.1016/j.fuel.2010.10.060.
  12. A. Stonoga V. da Silva, R. Weinschutz, C.I. Yamamoto and L.F.L. Luz Jr, Fuel, 106, 632 (2013); https://doi.org/10.1016/j.fuel.2012.12.024.
  13. N. Salahudeen and A.S. Ahmed, J. Incl. Phenom. Macrocycl. Chem., 87, 149 (2017); https://doi.org/10.1007/s10847-016-0686-0.
  14. G. Lisensky and I. Blitz, Preparation of Zeolite ZSM-5 and Catalysis of Xylene Isomerization, the Board of Regents of the University of Wisconsin System (2008).
  15. S. Yunusa, A.S. Ahmed and M. Yusuf, Synthesis and Characterization of Nanosized ZSM-5 from Kaolin at Low Temperature, Abstract Book of 6th Federation of European Zeolite Association (FEZA) Conference, Universitat Leipzig, Germany, 8–11th September, p. 397 (2014).
  16. N. Salahudeen, A.S. Ahmed, A.H. Al-Muhtaseb, M. Dauda, S.M. Waziri and B.Y. Jibril, Appl. Clay Sci., 105-106, 170 (2015); https://doi.org/10.1016/j.clay.2014.11.041.
  17. N. Salahudeen, A.S. Ahmed, A.H. Al-Muhtaseb, M. Dauda, S.M. Waziri, B.Y. Jibril and J. Al-Sabahi, Powder Technol., 280, 266 (2015); https://doi.org/10.1016/j.powtec.2015.04.024.
  18. N. Salahudeen, A.S. Ahmed, A.H. Al-Muhtaseb, M. Dauda, B.Y. Jibril, N. Viswanadham and S.K. Saxena, Res. Chem. Intermed., 43, 467 (2017); https://doi.org/10.1007/s11164-016-2635-3.
  19. S.K. Saxena, M. Kumar and N. Viswanadham, J. Mater. Sci., 48, 7949 (2013); https://doi.org/10.1007/s10853-013-7605-1.
  20. D.M. Ginter, A.T. Bell and C.J. Radke, Synthesis of Microporous Materials: Molecular Sieves, Van Nostrand Reinhold: New York (1992).
  21. R. Harry, Verified Synthesis of Zeolitic Materials; Linde Type Y”, Synthesis Commission of the International Zeolite Association, Elsevier, Amsterdam (2001).
  22. M.M.J. Treacy and J.B. Higgins, Collection of Simulated XRD Powders for Zeolites, Elsevier, Amsterdam, Netherlands (2001).
  23. J. Jiang, C. Duanmu, Y. Yang, X. Gu and J. Chen, Powder Technol., 251, 9 (2014); https://doi.org/10.1016/j.powtec.2013.10.020.
  24. P. Ghosh, K.J. Hickey and S.B. Jaffe, Ind. Eng. Chem. Res., 45, 337 (2006); https://doi.org/10.1021/ie050811h.
  25. V. Knop, M. Loos, C. Pera and N. Jeuland, Fuel, 115, 666 (2014); https://doi.org/10.1016/j.fuel.2013.07.093.