Main Article Content

Abstract

The synthesis and X-ray crystal structure of methyl pamoate and double templated self-assembly and crystal structure of new polynuclear nickel(II)/barium(II) cluster with methyl pamoate is reported. Methyl pamoate was prepared by refluxing pamoic acid (m.f. C23H16O6)with thionyl chloride to get pamoyl chloride and then refluxing this pamoyl chloride with methanol. Methyl pamoate was further used to get Ni(II)/Ba(II)-polynuclear complex by refluxing with Ni(ClO4)2·6H2O and Ba(ClO4)2·3H2O and this complex was characterized by elemental analysis, FTIR. Methyl pamoate and its complex with nickel(II)/barium(II) were crystallized by vapour diffusion method and crystals were characterized by a single crystal X-ray diffraction study. Polynuclear nickel(II)/barium(II) cluster with methyl pamoate crystallized in the triclinic space group P-1, with unit cell parameters a = 19.0613 Å , b = 19.2428 Å , c = 26.1916 Å , a = 111.0657°, b = 111.1175°, g = 118.0667°, V = 6059.009 Å3, Z = 6. The cluster contains three nickel(II) atoms and one barium(II) atom and these are coordinated by four molecules of methyl pamoate. Methyl pamoate crystallized in the trigonal space group P3(2)21, with unit cell parameters a = 10.5069 Å , b = 10.5069 Å , c = 15.5909 Å , a = 90°, b = 90°, g = 120°, V = 1490.56 Å3, Z = 3.

Keywords

Pamoyl ester Polynuclear cluster Double template Methyl pamoate

Article Details

References

  1. E.A. Tomic, J. Appl. Polym. Sci., 9, 3745 (1965); https://doi.org/10.1002/app.1965.070091121.
  2. B.F. Hoskins and R. Robson, J. Am. Chem. Soc., 112, 1546 (1990); https://doi.org/10.1021/ja00160a038.
  3. S.L. James, Chem. Soc. Rev., 32, 276 (2003); https://doi.org/10.1039/b200393g.
  4. N.W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe and O.M. Yaghi, Acc. Chem. Res., 38, 176 (2005); https://doi.org/10.1021/ar020022l.
  5. S. Noro, S. Kitagawa, M. Kondo and K. Seki, Angew. Chem. Int. Ed. Engl., 39, 2081 (2000); https://doi.org/10.1002/1521-3773(20000616)39:12<2081::AID-ANIE2081>3.0.CO;2-A.
  6. B. Kesanli, Y. Cui, M. Smith, E. Bittner, B. Bockrath and W. Lin, Angew. Chem. Int. Ed. Engl., 44, 72 (2005); https://doi.org/10.1002/anie.200461214.
  7. M. Eddaoudi, J. Kim, V. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and O.M. Yaghi, Science, 295, 469 (2002); https://doi.org/10.1126/science.1067208.
  8. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe and O.M. Yaghi, Science, 300, 1127 (2003); https://doi.org/10.1126/science.1083440.
  9. K.S. Min and M.P. Suh, J. Am. Chem. Soc., 122, 6834 (2000); https://doi.org/10.1021/ja000642m.
  10. K. Kim, J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh and Y.J. Jeon, Nature, 404, 982 (2000); https://doi.org/10.1038/35010088.
  11. L. Pan, H. Liu, X. Lei, X. Huang, D.H. Olson, N.J. Turro and J. Li, Angew. Chem., 115, 560 (2003); https://doi.org/10.1002/ange.200390124.
  12. L. Pan, H. Liu, X. Lei, X. Huang, D.H. Olson, N.J. Turro and J. Li, Angew. Chem. Int. Ed. Engl., 42, 542 (2003); https://doi.org/10.1002/anie.200390156.
  13. B. Kesanli and W. Lin, Coord. Chem. Rev., 246, 305 (2003); https://doi.org/10.1016/j.cct.2003.08.004.
  14. C.D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc., 127, 8940 (2005); https://doi.org/10.1021/ja052431t.
  15. C.D. Wu and W. Lin, Angew. Chem., 119, 1093 (2007); https://doi.org/10.1002/ange.200602099.
  16. C.D. Wu and W. Lin, Angew. Chem. Int. Ed. Engl., 46, 1075 (2007); https://doi.org/10.1002/anie.200602099.
  17. B. Chen, C. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.B. Lobkovsky, O.M. Yaghi and S. Dai, Angew. Chem., 118, 1418 (2006); https://doi.org/10.1002/ange.200502844.
  18. B. Chen, C. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.B. Lobkovsky, O.M. Yaghi and S. Dai, Angew. Chem. Int. Ed. Engl., 45, 1390 (2006); https://doi.org/10.1002/anie.200502844.
  19. S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.P. Lillerud, M. Bjorgen and A. Zecchina, Chem. Commun., 2300 (2004); https://doi.org/10.1039/B407246D.
  20. P. Ayyappan, O.R. Evans, Y. Cui, K.A. Wheeler and W. Lin, Inorg. Chem., 41, 4978 (2002); https://doi.org/10.1021/ic025819n.
  21. O. Kahn, Acc. Chem. Res., 33, 647 (2000); https://doi.org/10.1021/ar9703138.
  22. D.E. Wilcox, Chem. Rev., 96, 2435 (1996); https://doi.org/10.1021/cr950043b.
  23. J.E. Walker, Angew. Chem. Int. Ed. Engl., 37, 2308 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2308:: AID-ANIE2308>3.0.CO;2-W.
  24. P.D. Boyer, Angew. Chem. Int. Ed. Engl., 37, 2296 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2296:: AID-ANIE2296>3.0.CO;2-W.
  25. J.-H. Park, P.C. Dorrestein, H. Zhai, C. Kinsland, F.W. McLafferty and T.P. Begley, Biochemistry, 42, 12430 (2003); https://doi.org/10.1021/bi034902z.
  26. R.L.P. Adams, J.T. Knowler and D.P. Leader, The Biochemistry of Nucleic Acids, Chapman and Hall: New York, edn 10 (1986).
  27. G.M. Blackburn and M.J. Gait, Nucleic Acids in Chemistry and Biology, Oxford University Press: New York, edn 2 (1996).
  28. J.M. Berg, J.L. Tymoczko and L. Stryer, Biochemistry, W. H. Freeman and Company: New York, edn 5 (2001).
  29. B. Moulton and M.J. Zaworotko, Chem. Rev., 101, 1629 (2001); https://doi.org/10.1021/cr9900432.
  30. S.J. Cantrill, K.S. Chichak, A.J. Peters and J.F. Stoddart, Acc. Chem. Res., 38, 1 (2005); https://doi.org/10.1021/ar040226x.
  31. D. Braga, Chem. Commun., 2751 (2003); https://doi.org/10.1039/b306269b.
  32. S.R. Seidel and P.J. Stang, Acc. Chem. Res., 35, 972 (2002); https://doi.org/10.1021/ar010142d.
  33. M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa and K. Biradha, Chem. Commun., 509 (2001); https://doi.org/10.1039/b008684n.
  34. G. Férey, C. Mellot-Draznieks, C. Serre and F. Millange, Acc. Chem. Res., 38, 217 (2005); https://doi.org/10.1021/ar040163i.