Main Article Content

Abstract

The effect of carbonization temperature during the sol-gel preparation of TiO2/C hybrid aerogels on their photocatalytic performance for degradation of methylene blue and methyl orange is investigated. XRD, SEM, TEM, N2 adsorption, XPS and UV-visible spectroscopy were used to characterize the physico-chemical properties of TiO2/C hybrid aerogels. Results showed that higher carbonization temperature can promote the growth of TiO2/C nanoparticles in sol-gel process. Thereby, the porous properties, adsorption equilibrium and kinetics for methylene blue adsorption, crystalline size and band gap of TiO2 in the hybrid aerogels are changed accordingly. The photocatalytic activity of the hybrid aerogels is dominantly determined by adsorption equilibrium and kinetics. The narrowness of the band-gap and light availability are also responsible for the high photocatalytic activity.

Keywords

Photocatalysts Degradation Methylene blue Methyl orange Sol-gel method

Article Details

References

  1. J.L. Gole, J.D. Stout, C. Burda, Y. Lou and X. Chen, ChemInform, 35, 1230 (2004); https://doi.org/10.1002/chin.200417021.
  2. L. Baia, L. Diamandescu, L. Barbu-Tudoran, A. Peter, G. Melinte, V. Danciu and M. Baia, J. Alloys Comp., 509, 2672 (2011); https://doi.org/10.1016/j.jallcom.2010.11.154.
  3. M.M. Higarashi and W.F. Jardim, Catal. Today, 76, 201 (2002); https://doi.org/10.1016/S0920-5861(02)00219-5.
  4. P.V.R.K. Ramacharyulu, G.K. Prasad, K. Ganesan and B. Singh, J. Mol. Catal. Chem., 353–354, 132 (2012); https://doi.org/10.1016/j.molcata.2011.11.016.
  5. T. An, W. Zhang, X. Xiao, G. Sheng, J. Fu and X. Zhu, J. Photochem. Photobiol. Chem., 161, 233 (2004); https://doi.org/10.1016/j.nainr.2003.08.004.
  6. C. Wang, Y. Ao, P. Wang, J. Hou and J. Qian, Powder Technol., 210, 203 (2011); https://doi.org/10.1016/j.powtec.2011.03.015.
  7. J. Liu, W. Qin, S. Zuo, Y. Yu and Z. Hao, J. Hazard. Mater., 163, 273 (2009); https://doi.org/10.1016/j.jhazmat.2008.06.086.
  8. S. Rengaraj, S. Venkataraj, J.W. Yeon, Y. Kim, X.Z. Li and G.K.H. Pang, Appl. Catal. B, 77, 157 (2007); https://doi.org/10.1016/j.apcatb.2007.07.016.
  9. F.E. Osterloh, ChemInform, 39, 35 (2008); https://doi.org/10.1002/chin.200813223.
  10. D. Chen, Z. Jiang, J. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007); https://doi.org/10.1021/ie061491k.
  11. P. Górska, A. Zaleska, E. Kowalska, T. Klimczuk, J.W. Sobczak, E. Skwarek, W. Janusz and J. Hupka, Appl. Catal. B, 84, 440 (2008); https://doi.org/10.1016/j.apcatb.2008.04.028.
  12. Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang and P. Wang, Nano Lett., 13, 14 (2013); https://doi.org/10.1021/nl3029202.
  13. D. Sun, K. Wang, Z. Xu and R. Li, J. Rare Earths, 33, 491 (2015); https://doi.org/10.1016/S1002-0721(14)60446-4.
  14. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda and M. Inagaki, J. Mater. Chem., 12, 1391 (2002); https://doi.org/10.1039/b201942f.
  15. M.L. Chen, C.S. Lim and W.C. Oh, J. Ceram. Process. Res., 8, 119 (2007).
  16. M. Inagaki, F. Kojin, B. Tryba and M. Toyoda, Carbon, 43, 1652 (2005); https://doi.org/10.1016/j.carbon.2005.01.043.
  17. L. Pan, J.J. Zou, X. Zhang and L. Wang, J. Am. Chem. Soc., 133, 10000 (2011); https://doi.org/10.1021/ja2035927.
  18. M.S. Hamdy, R. Amrollahi and G. Mul, ACS Catal., 2, 2641 (2012); https://doi.org/10.1021/cs300593d.
  19. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan and Z. Zou, Appl. Catal. B, 69, 138 (2007); https://doi.org/10.1016/j.apcatb.2006.06.015.
  20. D. Li, Z. Xing, X. Yu and X. Cheng, Electrochim. Acta, 170, 182 (2015); https://doi.org/10.1016/j.electacta.2015.04.148.
  21. V. Kiran and S. Sampath, ACS Appl. Mater. Interfaces, 4, 3818 (2012); https://doi.org/10.1021/am300349k.
  22. H. Wang, Z. Wu and Y. Liu, J. Phys. Chem. C, 113, 13317 (2009); https://doi.org/10.1021/jp9047693.
  23. Y. Zhang, Z. Zhao, J. Chen, L. Cheng, J. Chang, W. Sheng, C. Hu and S. Cao, Appl. Catal. B, 165, 715 (2015); https://doi.org/10.1016/j.apcatb.2014.10.063.
  24. J. Yu, Q. Li, S. Liu and M. Jaroniec, Chem. Eur. J., 19, 2433 (2013); https://doi.org/10.1002/chem.201202778.
  25. W. Qian, P.A. Greaney, S. Fowler, S.-K. Chiu, A.M. Goforth and J. Jiao, ACS Sustain. Chem. Eng., 2, 1802 (2014); https://doi.org/10.1021/sc5001176.
  26. S. Lee, Y. Lee, D.H. Kim and J.H. Moon, ACS Appl. Mater. Interfaces, 5, 12526 (2013); https://doi.org/10.1021/am403820e.
  27. F. He, F. Ma, J. Li, T. Li and G. Li, Ceram. Int., 40, 6441 (2014); https://doi.org/10.1016/j.ceramint.2013.11.094.
  28. S. Sharma, S. Chaudhary, S.C. Kashyap and S.K. Sharma, J. Appl. Phys., 109, 083905 (2011); https://doi.org/10.1063/1.3567938.
  29. F. Dong, S. Guo, H. Wang, X. Li and Z. Wu, J. Phys. Chem. C, 115, 13285 (2011); https://doi.org/10.1021/jp111916q.
  30. J.P. Espinós, A. Fernández and A.R. González-Elipe, Surf. Sci. Lett., 295, 402 (1993); https://doi.org/10.1016/0039-6028(93)90287-T.
  31. M. Saif and M.S.A. Abdel-Mottaleb, Inorg. Chim. Acta, 360, 2863 (2007); https://doi.org/10.1016/j.ica.2006.12.052.
  32. J.W. Shi, C. Liu, C. He, J. Li, C. Xie, S. Yang, J.-W. Chen, S. Li and C. Niu, RSC Adv., 5, 17667 (2015); https://doi.org/10.1039/C4RA15824E.