Main Article Content

Abstract

Polypropylene (PP) and polyamide-6 (PA6) blending has been attempted to achieve improvement in mechanical properties, paintability and barrier properties and adding TiO2 into polymer matrix might produce nanocomposites with excellent mechanical, high antimicrobial and antioxidation properties. This article investigated the influence of different contents of TiO2 nanoparticles in the PP/PA6 and PP/PA6/5M (PP-g-MAH) on a counter rotating twin-screw extrude, respectively. The results of the PP/PA6/TiO2 nanometer composites steady-state rheological indication that small amounts of TiO2 nanoparticles can make PP/PA6 and melt viscosity of PP/PA6 composite decreased and the composites owned favourable rheological properties and improving the shear storage modulus G’, loss modulus G’’ and complex viscosity h* of composites. It also demonstrated that TiO2 nanoparticles can give the matrix material with favourable elasticity and viscosity at the same time. On the other hand, when the loading degree of TiO2 nanoparticles getting higher, parts of TiO2 nanoparticles react to agglomeration that increase the probability of TiO2 nanoparticles colliding with each other, which shows the loading degree of TiO2 nanoparticles have an optimum value and is completely consistent with result of mechanical properties test of composites.

Keywords

Polypropylene Polyamide-6 TiO2 nanoparticles Rheological behaviour

Article Details

References

  1. H.-S. Luo, M. Delshad, Z.-T. Li and A. Shahmoradi, Petrol. Sci., 13, 110 (2016); https://doi.org/10.1007/s12182-015-0066-1.
  2. T. Yamazaki, J. Phys. Chem. B, 118, 14687 (2014); https://doi.org/10.1021/jp506925x.
  3. Y.A. Budkov, I.I. Vyalov, A.L. Kolesnikov, N. Georgi, G.N. Chuev and M.G. Kiselev, J. Chem. Phys., 141, 204904 (2014); https://doi.org/10.1063/1.4902092.
  4. K.S. Pitzer, Acc. Chem. Res., 12, 271 (1979); https://doi.org/10.1021/ar50140a001.
  5. J.G. Wang and Y. Peng, J. Geochem. Explor., 144, 154 (2014); https://doi.org/10.1016/j.gexplo.2013.12.011.
  6. K. Nishii, G. Reese, E.C. Moran and J.L. Sparks, J. Mech. Behav. Biomed., 57, 201 (2016); https://doi.org/10.1016/j.jmbbm.2015.11.033.
  7. J. Pei, F. Meng, Y. Li, S. Yuan and J. Chen, Adv. Mechan. Eng., 8, 1 (2016); https://doi.org/10.1177/1687814016646266.
  8. M. Hussain, S. Bakalis, O. Gouseti, T. Zahoor, F.M. Anjum and M. Shahid, Int. J. Biol. Macromol., 72, 687 (2015); https://doi.org/10.1016/j.ijbiomac.2014.09.019.
  9. D.H. Thijssen, C.L. Atkinson, K. Ono, V.S. Sprung, A.L. Spence, C.J. Pugh and D.J. Green, J. Appl. Physiol., 116, 1300 (2014); https://doi.org/10.1152/japplphysiol.00110.2014.
  10. A. Cervera and M.M. Peretz, Resonant Switched-Capacitor Voltage Regulator with Ideal Transient Response, Proc. 29th Annu. IEEE Appl. Power Electron. Conf. Exposit. (APEC), pp. 867–872, March (2014).
  11. E. Abisset-Chavanne, J. Férec, G. Ausias, E. Cueto, F. Chinesta and R. Keunings, Arch. Comput. Methods Eng., 22, 511 (2015); https://doi.org/10.1007/s11831-014-9128-6.
  12. P.T. Griffiths, J. Non-Newton Fluid, 221, 9 (2015); https://doi.org/10.1016/j.jnnfm.2015.03.008.
  13. G.H. Tang and Y.B. Lu, Transp. Porous Media, 104, 435 (2014); https://doi.org/10.1007/s11242-014-0342-3.
  14. K.S. Whitley and T.S. Gates, AIAA J., 42, 1991 (2004); https://doi.org/10.2514/1.1063.
  15. A.K. Sharma, A.K. Tiwari and A.R. Dixit, Renew. Sustain. Energy Rev., 53, 779 (2016); https://doi.org/10.1016/j.rser.2015.09.033.
  16. G. Farahani, H. Ezzatpanah and S. Abbasi, LWT-Food Sci. Technol., 58, 335 (2014); https://doi.org/10.1016/j.lwt.2013.06.002.
  17. J.L. Rivera-Corona, F. Rodríguez-González, R. Rendón-Villalobos, E. García-Hernández and J. Solorza-Feria, LWT-Food Sci. Technol., 59, 806 (2014); https://doi.org/10.1016/j.lwt.2014.06.011.
  18. M.A. Osipov and E.M. Terentjev, Z. Naturforsch. A, 44, 785 (1989); https://doi.org/10.1515/zna-1989-0903.
  19. S. Motahar, N. Nikkam, A.A. Alemrajabi, R. Khodabandeh, M.S. Toprak and M. Muhammed, Int. Commun. Heat Mass., 59, 68 (2014); https://doi.org/10.1016/j.icheatmasstransfer.2014.10.016.
  20. D. Younesian and H. Norouzi, Thin Wall Struct., 92, 65 (2015); https://doi.org/10.1016/j.tws.2015.02.001.
  21. B. Ou, D. Li, Q. Liu, Z. Zhou and Q. Xiao, Polym.-Plast Technol., 51, 849 (2012); https://doi.org/10.1080/03602559.2012.671418.
  22. B. Ou, D. Li and Y. Liu, Compos. Sci. Technol., 69, 421 (2009); https://doi.org/10.1016/j.compscitech.2008.11.010.
  23. B. Ou, Z. Zhou, Q. Liu, B. Liao, Y. Xiao, J. Liu, X. Zhang, D. Li, Q. Xiao and S. Shen, Polym. Compos., 35, 294 (2014); https://doi.org/10.1002/pc.22661.
  24. S. Jain, R. Samanta and S.P. Trivedi, J. High Energy Phys., 2015, 28 (2015); https://doi.org/10.1007/JHEP10(2015)028.
  25. S. Aktas, D.M. Kalyon, B.M. Marín-Santibáñez and J. Pérez-González, J. Rheol., 58, 513 (2014); https://doi.org/10.1122/1.4866295.
  26. S. Hina, M. Mustafa, T. Hayat and N.D. Alotaibi, Appl. Math. Comput., 263, 378 (2015); https://doi.org/10.1016/j.amc.2015.04.068.
  27. A. Linkevich, S. Spiridonov and G. Chechkin, J. Math. Sci., 202, 849 (2014); https://doi.org/10.1007/s10958-014-2081-y.
  28. L. Fusi, A. Farina and F. Rosso, Int. J. Non-linear Mech., 64, 33 (2014); https://doi.org/10.1016/j.ijnonlinmec.2014.03.016.
  29. W.J. Parnell and C. Calvo-Jurado, J. Eng. Math., 95, 295 (2015); https://doi.org/10.1007/s10665-014-9777-3.
  30. F. Salmoiraghi, F. Ballarin, L. Heltai and G. Rozza, Adv. Mod. Simul. Eng. Sci., 3, 21 (2016); https://doi.org/10.1186/s40323-016-0076-6.