Main Article Content

Abstract

Palladium is used in several biomedical and technological applications and has very low natural abundance in the earth crust. Ionically cross-linked N-succinyl chitosan beads (NSCBs) have been synthesized and tested for extraction of palladium from aqueous waste. Batch extraction studies have been carried out to understand the influence of various experimental parameters on the sorption behaviour of palladium. Sorption kinetics is found to be fast and the kinetics data fitted well in to pseudo second-order model for the sorption of palladium ions onto the composite beads. Different sorption isotherm models have also been applied to the experimental data. Equilibrium data are found to be represented well by Langmuir isotherm equation, with monolayer sorption capacity of around 6 mg/ g for the swollen beads and 60 mg/g for the dried beads. Reusability of the beads has also been established by multiple sorption-desorption experiments.

Keywords

Chitosan N-Succinyl chitosan Sorption Palladium Polymeric beads

Article Details

References

  1. M.S. Saurat and J. Bringezu, J. Ind. Ecol., 12, 754 (2008); https://doi.org/10.1111/j.1530-9290.2008.00087.x.
  2. L. Erdmann and T.E. Graedel, Environ. Sci. Technol., 45, 7620 (2011); https://doi.org/10.1021/es200563g.
  3. C. Hagelüken, Chimica Oggi/Chemistry Today, 2, 14 (2006).
  4. K. Inoue, T. Yamaguchi, M. Iwasaki, K. Ohto and K. Yoshizuka, Sep. Sci. Technol., 30, 2477 (1995); https://doi.org/10.1080/01496399508021396.
  5. E. Guibal, Sep. Purif. Technol., 38, 43 (2004); https://doi.org/10.1016/j.seppur.2003.10.004.
  6. A.B. Kanagare, K.K. Singh, K.K. Bairwa, R. Ruhela, V.S. Shinde, M. Kumar and A.K. Singh, J. Environ. Chem. Eng., 4, 3357 (2016); https://doi.org/10.1016/j.jece.2016.06.031.
  7. A.B. Kanagare, K.K. Singh, G.K. Kumar, V.S. Shinde and M. Kumar, Int. J. Innov. Res. Sci., Eng. Technol., 5, 265 (2016); https://doi.org/10.15680/IJIRSET.2015.0501033.
  8. A.B. Kanagare, K.K. Singh, M. Kumar, M. Yadav, R. Ruhela, A.K. Singh, A. Kumar and V.S. Shinde, Ind. Eng. Chem. Res., 55, 12644 (2016); https://doi.org/10.1021/acs.iecr.6b03350.
  9. K.K. Singh, R. Ruhela, A. Das, M. Kumar, A.K. Singh, R.C. Hubli and P.N. Bajaj, J. Environ. Chem. Eng., 3, 95 (2015); https://doi.org/10.1016/j.jece.2014.11.002.
  10. S.-I. Park, I.S. Kwak, S.W. Won and Y.-S. Yun, J. Hazard. Mater., 248–249, 211 (2013); https://doi.org/10.1016/j.jhazmat.2013.01.013.
  11. J.J. Byerley, J.M. Scharer and S. Rioux, eds.: J. Salley, R.G.L. McCready and P.L. Wichlacz, Reactions of Precious Metal Complexes with Biopolymers, In: Biohydrometallurgy, CANMET: Montreal, Canada, pp. 301-316 (1989).
  12. E. Guibal, A. Larkin, T. Vincent and J.M. Tobin, Ind. Eng. Chem. Res., 38, 4011 (1999); https://doi.org/10.1021/ie990165k.
  13. W.S. Wan Ngah and K.H. Liang, Ind. Eng. Chem. Res., 38, 1411 (1999); https://doi.org/10.1021/ie9803164.
  14. A.H. Chen, C.Y. Yang, C.Y. Chen, C.Y. Chen and C.W. Chen, J. Hazard. Mater., 163, 1068 (2009); https://doi.org/10.1016/j.jhazmat.2008.07.073.
  15. G.G. Maghami and G.A.F. Roberts, Makromol. Chem., 189, 2239 (1988); https://doi.org/10.1002/macp.1988.021891003.
  16. D.J. Knorr, Food Sci., 48, 36 (1983); https://doi.org/10.1111/j.1365-2621.1983.tb14783.x.
  17. G. Gibbs, J.M. Tobin and E. Guibal, J. Appl. Polym. Sci., 90, 1073 (2003); https://doi.org/10.1002/app.12761.
  18. H. Yoshida, A. Okamoto and T. Kataoka, Chem. Eng. Sci., 48, 2267 (1993); https://doi.org/10.1016/0009-2509(93)80242-I.
  19. Z. Aiping, C. Tian, Y. Lanhua, W. Hao and L. Ping, Carbohydr. Polym., 66, 274 (2006); https://doi.org/10.1016/j.carbpol.2006.03.014.
  20. X.-N. Zhang, C. Zhang, Q. Zhu, Y. Zhou, Y. Liu, W. Chen, S. Yang, X. Zhou, A. Zhu, Y. Jin and Z.-Q. Yuan, Int. J. Nanomedicine, 9, 2919 (2014); https://doi.org/10.2147/IJN.S59799.
  21. Y.S. Ho and G. McKay, Process Saf. Environ. Prot., 76, 183 (1998); https://doi.org/10.1205/095758298529326.
  22. X. Yang and B. Al-Duri, J. Colloid Interface Sci., 287, 25 (2005); https://doi.org/10.1016/j.jcis.2005.01.093.
  23. R. Ruhela, K.K. Singh, B.S. Tomar, J.N. Sharma, M. Kumar, R.C. Hubli and A.K. Suri, Sep. Purif. Technol., 99, 36 (2012); https://doi.org/10.1016/j.seppur.2012.08.018.
  24. G.E. Boyd, A.W. Adamson and L.S. Myers Jr., J. Am. Chem. Soc., 69, 2836 (1947). https://doi.org/10.1021/ja01203a066.
  25. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
  26. G. McKay, H.S. Blair and J.R. Gardner, J. Appl. Polym. Sci., 27, 3043 (1982); https://doi.org/10.1002/app.1982.070270827.
  27. H.M.F. Freundlich, Z. Phys. Chem., 57, 385 (1907); https://doi.org/10.1515/zpch-1907-5723.
  28. S.J. Allen, Q. Gan, R. Matthews and P.A. Johnson, Bioresour. Technol., 88, 143 (2003); https://doi.org/10.1016/S0960-8524(02)00281-X.
  29. R. Ruhela, S. Panja, B.S. Tomar, A.K. Singh, S.C. Tripathi, P.M. Gandhi and R.C. Hubli, Sep. Purif. Technol., 124, 49 (2014); https://doi.org/10.1016/j.seppur.2013.12.040.