Main Article Content

Abstract

In this study, an electrochemical ascorbic acid sensor was constructed based on a glassy carbon electrode modified with graphene/ polyaniline (GN/PANI) nanocomposites. The UV-visible spectroscopy was used to characterize the nanocomposites. Cyclic voltammetry were used to evaluate the electrocatalytic activity towards the oxidation of ascorbic acid in neutral media. The results show that the GN/PANI nanocomposites show excellent electrocatalytic activity toward ascorbic acid oxidation.

Keywords

Graphene Polyaniline Ascorbic acid Electrochemical sensor

Article Details

References

  1. S. Pakapongpan, J.P. Mensing, D. Phokharatkul, T. Lomas and A. Tuantranont, Electrochim. Acta, 133, 294 (2014); https://doi.org/10.1016/j.electacta.2014.03.167.
  2. O. Arrigoni and M.C. De Tullio, Biochim. Biophys. Acta, 1569, 1 (2002); https://doi.org/10.1016/S0304-4165(01)00235-5.
  3. X. Wu, Y.X. Diao, C.X. Sun, J.H. Yang, Y.B. Wang and S.N. Sun, Talanta, 59, 95 (2003); https://doi.org/10.1016/S0039-9140(02)00475-7.
  4. G. Burini, J. Chromatogr. A, 1154, 97 (2007); https://doi.org/10.1016/j.chroma.2007.03.013.
  5. T. Wu, Y.Q. Guan and J.N. Ye, Food Chem., 100, 1573 (2007); https://doi.org/10.1016/j.foodchem.2005.12.042.
  6. S.A. Kumar, P.H. Lo and S.M. Chen, Biosens. Bioelectron., 24, 518 (2008); https://doi.org/10.1016/j.bios.2008.05.007.
  7. S.Y. Qiu, S. Gao, Q.D. Liu, Z.Y. Lin, B. Qiu and G.N. Chen, Biosens. Bioelectron., 26, 4326 (2011); https://doi.org/10.1016/j.bios.2011.04.029.
  8. A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849.
  9. K. Zhang, L.L. Zhang, X.S. Zhao and J.S. Wu, Chem. Mater., 22, 1392 (2010); https://doi.org/10.1021/cm902876u.
  10. K.I. Ho, C.H. Huang, J.H. Liao, W.J. Zhang, L.J. Li, C.S. Lai and C.Y. Su, Sci. Rep., 4, 5893 (2014); https://doi.org/10.1038/srep05893.
  11. C.-X. Yuan, Y.-R. Fan, Tao-Zhang, H.-X. Guo, J.-X. Zhang, Y.-L. Wang, D.-L. Shan and X.-Q. Lu, Biosens. Bioelectron., 58, 85 (2014); https://doi.org/10.1016/j.bios.2014.01.041.
  12. B. Cheng, X.D. Zhang, X.H. Ma, J.W. Wen, Y. Yu and C.H. Chen, J. Power Sources, 265, 104 (2014); https://doi.org/10.1016/j.jpowsour.2014.04.046.
  13. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006); https://doi.org/10.1038/nature04969.
  14. S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.T. Nguyen and R.S. Ruoff, J. Mater. Chem., 16, 155 (2006); https://doi.org/10.1039/B512799H.
  15. Y. Liang, D. Wu, X. Feng and K. Müllen, Adv. Mater., 21, 1679 (2009); https://doi.org/10.1002/adma.200803160.
  16. Y.J. Guo, S.J. Guo, J.T. Ren, Y.M. Zhai, S.J. Dong and E.K. Wang, ACS Nano, 4, 5512 (2010); https://doi.org/10.1021/nn101860d.
  17. M. Zhao, X.M. Wu and C.X. Cai, J. Phys. Chem. C, 113, 4987 (2009); https://doi.org/10.1021/jp807621y.
  18. J.D. Qiu, L. Shi, R.P. Liang, G.C. Wang and X.H. Xia, Chemistry, 18, 7950 (2012); https://doi.org/10.1002/chem.201200258.