Main Article Content
Abstract
In this paper, according to doping the lanthanide ions, fluorescent and magnetic NaYbF4 micro-tubes with hexagonal phase were synthesized via hydrothermal method using oleic acid as a capping ligand and surface modifier. Some of the samples were tested by Xray diffraction analysis, transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy and vibrating sample magnetometer (VSM). From the TEM and FE-TEM, NaYbF4 micro-tubes showed high quality of hexagonal shape. In such NaYbF4 system, the upconversion luminescence (UCL) colours turn from purplish blue to blue, greenish white and further to yellowish green. The upconversion luminescence mechanisms were also analyzed by spectral methods. Besides, such NaYbF4 micro-tubes showed good paramagnetic characteristic at room temperature and the magnetic mass susceptibility reached to 3.43 × 10-5 emu/g per Oe and 0.51 emu/g at 15 kOe. Such excellent characteristics showed that NaYbF4 is a good host material and may have good potential applications in lasers photonics and dual-modal bio-probe.
Keywords
Article Details
Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- H. Hu, L.Q. Xiong, J. Zhou, F.Y. Li, T.Y. Cao and C.H. Huang, Chem. Eur. J., 15, 3577 (2009); https://doi.org/10.1002/chem.200802261.
- V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini and J.A. Capobianco, J. Mater. Chem., 19, 3149 (2009); https://doi.org/10.1039/b900300b.
- N. Niu, P. Yang, F. He, X. Zhang, S. Gai, C. Li and J. Lin, J. Mater. Chem., 22, 10889 (2012); https://doi.org/10.1039/c2jm31256e.
- T.S. Atabaev, M. Kurisu, K. Konishi and N.H. Hong, Am. J. Nanosci. Nanotechnol., 2, 13 (2014); https://doi.org/10.11648/j.nano.20140201.13.
- T.S. Atabaev, Z. Piao, Y.-H. Hwang, H.-K. Kim and N.H. Hong, J. Alloys Comp., 572, 113 (2013); https://doi.org/10.1016/j.jallcom.2013.03.249.
- N.K. Al-Rasbi, H. Adams and F.O. Suliman, Dyes Pigments, 104, 83 (2014); https://doi.org/10.1016/j.dyepig.2013.12.030.
- P.V. Ramakrishna, D.B.R.K. Murthy and D.L. Sastry, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 234 (2014); https://doi.org/10.1016/j.saa.2014.01.110.
- V. Kumar, V. Kumar, S. Som, L.P. Purohit, O.M. Ntwaeaborwa and H.C. Swart, J. Alloys Comp., 594, 32 (2014); https://doi.org/10.1016/j.jallcom.2014.01.110.
- W.J. Kim, M. Nyk and P.N. Prasad, Nanotechnology, 20, 185301 (2009); https://doi.org/10.1088/0957-4484/20/18/185301.
- J.M. Meruga, W.M. Cross, P. Stanley May, Q.A. Luu, G.A. Crawford and J.J. Kellar, Nanotechnology, 23, 395201 (2012); https://doi.org/10.1088/0957-4484/23/39/395201.
- G. Ren, S. Zeng and J. Hao, J. Phys. Chem. C, 115, 20141 (2011); https://doi.org/10.1021/jp2064529.
- S. Schietinger, L.D. Menezes, B. Lauritzen and O. Benson, Nano Lett., 9, 2477 (2009); https://doi.org/10.1021/nl901253t.
- H. Wang, Z. Yi, L. Rao, H. Liu and S. Zeng, J. Mater. Chem. C Mater. Opt. Electron. Devices, 1, 5520 (2013); https://doi.org/10.1039/c3tc30796d.
- S. Jiang, Y. Zhang, K.M. Lim, E.K. Sim and L. Ye, Nanotechnology, 20, 155101 (2009); https://doi.org/10.1088/0957-4484/20/15/155101.
- T. Jiang, W. Song, S. Liu and W. Qin, J. Flurine Chem, 140, 70 (2012); https://doi.org/10.1016/j.jfluchem.2012.05.005.
- N. Johnson, N.M. Sangeetha, J.C. Boyer and F. van Veggel, Nanoscale, 2, 771 (2010); https://doi.org/10.1039/b9nr00379g.
- L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.-T. Lee and Z. Liu, Biomaterials, 33, 2215 (2012); https://doi.org/10.1016/j.biomaterials.2011.11.069.
- S.L. Gai, P.P. Yang, C.X. Li, W.X. Wang, Y.L. Dai, N. Niu and J. Lin, Adv. Funct. Mater., 20, 1166 (2010); https://doi.org/10.1002/adfm.200902274.
- R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask and P.N. Prasad, Adv. Funct. Mater., 19, 853 (2009); https://doi.org/10.1002/adfm.200800765.
- F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen and X. Liu, Nat. Mater., 10, 968 (2011); https://doi.org/10.1038/nmat3149.
- F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong and X. Liu, Nature, 463, 1061 (2010); https://doi.org/10.1038/nature08777.
- Z.L. Wang, J.H. Hao and H. Chan, J. Mater. Chem., 20, 3178 (2010); https://doi.org/10.1039/b924448d.
- S. Zeng, M.-K. Tsang, C.-F. Chan, K.-L. Wong, B. Fei and J. Hao, Nanoscale, 4, 5118 (2012); https://doi.org/10.1039/c2nr31294h.
- K.A. Abel, J.-C. Boyer and F.C.J.M. Veggel, J. Am. Chem. Soc., 131, 14644 (2009); https://doi.org/10.1021/ja906971y.
References
H. Hu, L.Q. Xiong, J. Zhou, F.Y. Li, T.Y. Cao and C.H. Huang, Chem. Eur. J., 15, 3577 (2009); https://doi.org/10.1002/chem.200802261.
V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini and J.A. Capobianco, J. Mater. Chem., 19, 3149 (2009); https://doi.org/10.1039/b900300b.
N. Niu, P. Yang, F. He, X. Zhang, S. Gai, C. Li and J. Lin, J. Mater. Chem., 22, 10889 (2012); https://doi.org/10.1039/c2jm31256e.
T.S. Atabaev, M. Kurisu, K. Konishi and N.H. Hong, Am. J. Nanosci. Nanotechnol., 2, 13 (2014); https://doi.org/10.11648/j.nano.20140201.13.
T.S. Atabaev, Z. Piao, Y.-H. Hwang, H.-K. Kim and N.H. Hong, J. Alloys Comp., 572, 113 (2013); https://doi.org/10.1016/j.jallcom.2013.03.249.
N.K. Al-Rasbi, H. Adams and F.O. Suliman, Dyes Pigments, 104, 83 (2014); https://doi.org/10.1016/j.dyepig.2013.12.030.
P.V. Ramakrishna, D.B.R.K. Murthy and D.L. Sastry, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 234 (2014); https://doi.org/10.1016/j.saa.2014.01.110.
V. Kumar, V. Kumar, S. Som, L.P. Purohit, O.M. Ntwaeaborwa and H.C. Swart, J. Alloys Comp., 594, 32 (2014); https://doi.org/10.1016/j.jallcom.2014.01.110.
W.J. Kim, M. Nyk and P.N. Prasad, Nanotechnology, 20, 185301 (2009); https://doi.org/10.1088/0957-4484/20/18/185301.
J.M. Meruga, W.M. Cross, P. Stanley May, Q.A. Luu, G.A. Crawford and J.J. Kellar, Nanotechnology, 23, 395201 (2012); https://doi.org/10.1088/0957-4484/23/39/395201.
G. Ren, S. Zeng and J. Hao, J. Phys. Chem. C, 115, 20141 (2011); https://doi.org/10.1021/jp2064529.
S. Schietinger, L.D. Menezes, B. Lauritzen and O. Benson, Nano Lett., 9, 2477 (2009); https://doi.org/10.1021/nl901253t.
H. Wang, Z. Yi, L. Rao, H. Liu and S. Zeng, J. Mater. Chem. C Mater. Opt. Electron. Devices, 1, 5520 (2013); https://doi.org/10.1039/c3tc30796d.
S. Jiang, Y. Zhang, K.M. Lim, E.K. Sim and L. Ye, Nanotechnology, 20, 155101 (2009); https://doi.org/10.1088/0957-4484/20/15/155101.
T. Jiang, W. Song, S. Liu and W. Qin, J. Flurine Chem, 140, 70 (2012); https://doi.org/10.1016/j.jfluchem.2012.05.005.
N. Johnson, N.M. Sangeetha, J.C. Boyer and F. van Veggel, Nanoscale, 2, 771 (2010); https://doi.org/10.1039/b9nr00379g.
L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.-T. Lee and Z. Liu, Biomaterials, 33, 2215 (2012); https://doi.org/10.1016/j.biomaterials.2011.11.069.
S.L. Gai, P.P. Yang, C.X. Li, W.X. Wang, Y.L. Dai, N. Niu and J. Lin, Adv. Funct. Mater., 20, 1166 (2010); https://doi.org/10.1002/adfm.200902274.
R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask and P.N. Prasad, Adv. Funct. Mater., 19, 853 (2009); https://doi.org/10.1002/adfm.200800765.
F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen and X. Liu, Nat. Mater., 10, 968 (2011); https://doi.org/10.1038/nmat3149.
F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong and X. Liu, Nature, 463, 1061 (2010); https://doi.org/10.1038/nature08777.
Z.L. Wang, J.H. Hao and H. Chan, J. Mater. Chem., 20, 3178 (2010); https://doi.org/10.1039/b924448d.
S. Zeng, M.-K. Tsang, C.-F. Chan, K.-L. Wong, B. Fei and J. Hao, Nanoscale, 4, 5118 (2012); https://doi.org/10.1039/c2nr31294h.
K.A. Abel, J.-C. Boyer and F.C.J.M. Veggel, J. Am. Chem. Soc., 131, 14644 (2009); https://doi.org/10.1021/ja906971y.