Main Article Content

Abstract

Tin dioxide thin films were prepared by sol-gel dip coating technique using SnCl2·2H2O and ammonium hydroxide solution. The obtained thin film slides have been annealed at different temperature (200, 400 and 600 °C) in air at constant time (90 min). Structure and surface morphology of SnO2 thin films were investigated and characterized by X-ray diffraction, atomic force microscope, scanning electron microscope, UV/visible and FTIR measurements. The optical properties of SnO2 thin film were studied, such as transmittance, extinction coefficient, absorption coefficient and optical energy gap. The X-ray diffraction indicates a decreasing in crystaline size with increasing of doping concentration. The optical energy band gap was increased with the annealing temperature in range of (3.6 to 3.9) eV.

Keywords

SnO2 thin film X-ray diffraction Morphology Energy gap

Article Details

References

  1. G.Q. Zhong, S.R. Luan, P. Wang, Y.C. Guo, Y.R. Chen and Y.Q. Jia, J. Therm. Anal. Calorim., 86, 775 (2006); https://doi.org/10.1007/s10973-005-6959-2.
  2. Z.P. Zhang, G.Q. Zhong and Q.Y. Jiang, Prog. Chem., 20, 1315 (2008).
  3. D.C. Reis, M.C.X. Pinto, E.M. Souza-Fagundes, L.F. Rocha, V.R.A. Pereira, C.M.L. Melo and H. Beraldo, Biometals, 24, 595 (2011); https://doi.org/10.1007/s10534-011-9407-8.
  4. J.A. Lessa, D.C. Reis, I.C. Mendes, N.L. Speziali, L.F. Rocha, V.R.A. Pereira, C.M.L. Melo and H. Beraldo, Polyhedron, 30, 372 (2011); https://doi.org/10.1016/j.poly.2010.11.004.
  5. E.H. Lizarazo-Jaimes, P.G. Reis, F.M. Bezerra, B.L. Rodrigues, R.L. Monte-Neto, M.N. Melo, F. Frézard and C. Demicheli, J. Inorg. Biochem., 132, 30 (2014); https://doi.org/10.1016/j.jinorgbio.2013.12.001.
  6. I. Ozturk, S. Filimonova, S.K. Hadjikakou, N. Kourkoumelis, V. Dokorou, M.J. Manos, A.J. Tasiopoulos, M.M. Barsan, I.S. Butler, E.R. Milaeva, J. Balzarini and N. Hadjiliadis, Inorg. Chem., 49, 488 (2010); https://doi.org/10.1021/ic901442e.
  7. E.D.L. Piló, A.A. Recio-Despaigne, J.G. Da Silva, I.P. Ferreira, J.A. Takahashi and H. Beraldo, Polyhedron, 97, 30 (2015); https://doi.org/10.1016/j.poly.2015.05.004.
  8. T. Tunç, M.S. Karacan, H. Ertabaklar, M. Sarý, N. Karacan and O. Büyükgüngör, J. Photochem. Photobiol. B, 153, 206 (2015); https://doi.org/10.1016/j.jphotobiol.2015.09.022.
  9. O.S. Urgut, I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M. Manoli, A.J. Tasiopoulos and S.K. Hadjikakou, Inorg. Chim. Acta, 443, 141 (2016); https://doi.org/10.1016/j.ica.2015.12.028.
  10. I.I. Ozturk, O.S. Urgut, C.N. Banti, N. Kourkoumelis, A.M. Owczarzak, M. Kubicki and S.K. Hadjikakou, Polyhedron, 70, 172 (2014); https://doi.org/10.1016/j.poly.2013.12.025.
  11. A. Han, I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M. Manoli, A.J. Tasiopoulos, A.M. Owczarzak, M. Kubicki and S.K. Hadjikakou, Polyhedron, 79, 151 (2014); https://doi.org/10.1016/j.poly.2014.05.014.
  12. D.C. Reis, M.C.X. Pinto, E.M. Souza-Fagundes, S.M. Wardell, J.L. Wardell and H. Beraldo, Eur. J. Med. Chem., 45, 3904 (2010); https://doi.org/10.1016/j.ejmech.2010.05.044.
  13. I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M.J. Manos, A.J. Tasiopoulos, A.M. Owczarzak, M. Kubicki and S.K. Hadjikakou, Polyhedron, 67, 89 (2014); https://doi.org/10.1016/j.poly.2013.08.052.
  14. S. Timári, R. Cerea and K. Várnagy, J. Inorg. Biochem., 105, 1009 (2011); https://doi.org/10.1016/j.jinorgbio.2011.04.007.
  15. V.M. Manikandamathavan, T. Weyhermüller, R.P. Parameswari, M. Sathishkumar, V. Subramanian and B.U. Nair, Dalton Trans., 43, 13018 (2014); https://doi.org/10.1039/C4DT01378F.
  16. G.Q. Zhong, J. Shen, Q.Y. Jiang, Y.Q. Jia, M.J. Chen and Z.P. Zhang, J. Therm. Anal. Calorim., 92, 607 (2008); https://doi.org/10.1007/s10973-007-8579-5.
  17. G.Q. Zhong, J. Shen, Q.Y. Jiang and K.B. Yu, Chin. J. Chem., 29, 2650 (2011); https://doi.org/10.1002/cjoc.201100394.
  18. J. Shen, B. Jin, Q.Y. Jiang, G.Q. Zhong, Y.M. Hu and J.C. Huo, Inorg. Chim. Acta, 385, 158 (2012); https://doi.org/10.1016/j.ica.2012.01.045.
  19. D. Li and G.Q. Zhong, Bioinorg. Chem. Appl., 2014, 461605 (2014); https://doi.org/10.1155/2014/461605.
  20. Y.C. Guo, S.R. Luan, Y.R. Chen, X.S. Zang, Y.Q. Jia, G.Q. Zhong and S.K. Ruan, J. Therm. Anal. Calorim., 68, 1025 (2002); https://doi.org/10.1023/A:1016163111068.
  21. M.S. Refat, G.G. Mohamed, R.F. de Farias, A.K. Powell, M.S. El-Garib, S.A. El-Korashy and M.A. Hussien, J. Therm. Anal. Calorim., 102, 225 (2010); https://doi.org/10.1007/s10973-009-0404-x.
  22. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordi-nation Compounds, Wiley & Sons, New York, edn 4 (1986).
  23. B. Xu and B. Yan, Spectrosc. Lett., 39, 237 (2006); https://doi.org/10.1080/00387010600636965.
  24. G.Q. Zhong and Y. Zhang, Asian J. Chem., 25, 8549 (2013); https://doi.org/10.14233/ajchem.2013.14834.