Main Article Content
Abstract
The structural, geometric and electronic prosperities of most stable indium oxide (In2O3) shapes in the neutral state and in both open and close forms are studied and investigated using density function theory (DFT). The ball shape structure in neutral quintet is preferred over all the other possible structures for the neutral shape. The lowest energy geometric prefers the Y shape arrangement in triplet state. The energy gap (Egap) of the most stable indium oxide shapes as a function to the shapes is also discussed.
Keywords
Article Details
Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- M. Valášková and H. Akbulut, Adv. Sci. Eng. Med., 3, 1 (2011); https://doi.org/10.1166/asem.2011.1067.
- M.-M. Bagheri-Mohagheghi, N. Shahtahmasebi, E. Mozafari and M. Shokooh-Saremi, Physica E, 41, 1757 (2009); https://doi.org/10.1016/j.physe.2009.06.009.
- T.-H. Tsai, S.-C. Chiou and S.-M. Chen, Int. J. Electrochem. Sci., 6, 3333 (2011).
- J.T. McCue and J.Y. Ying, Chem. Mater., 19, 1009 (2007); https://doi.org/10.1021/cm0617283.
- R.S. Henrique, R.F.B. De Souza, J.C.M. Silva, J.M.S. Ayoub, R.M. Piasentin, M. Linardi, E.V. Spinacé and A.O. Santos, Int. J. Electrochem. Sci., 7, 2036 (2012).
- J. Parrondo, R. Santhanam, F. Mijangos and B. Rambabu, Int. J. Electrochem. Sci., 5, 1342 (2010).
- B. Devadas, M. Rajkumar, S.M. Chen and R. Saraswathi, Int. J. Electrochem. Sci., 7, 333 (2012).
- S.-J. Kim, I.-S. Hwang, J.-K. Choi, Y.C. Kang and J.-H. Lee, Sens. Actuators B, 155, 512 (2011); https://doi.org/10.1016/j.snb.2010.12.055.
- H. Odaka, Y. Shigesato, T. Murakami and S. Iwata, Jpn. J. Appl. Phys., 40, 3231 (2001); https://doi.org/10.1143/JJAP.40.3231.
- F. Matino, L. Persano, V. Arima, D. Pisignano, R.I.R. Blyth, R. Cingolani and R. Rinaldi, Phys. Rev. B, 72, 085437 (2005); https://doi.org/10.1103/PhysRevB.72.085437.
- F. Chen, Z. Huang and N. Tao, Appl. Phys. Lett., 91, 162106 (2007); https://doi.org/10.1063/1.2800303.
- S. Mukhopadhyay, S. Gowtham, R. Pandey and A. Costales, J. Mole Struc. Theochem., 948, 31 (2010); https://doi.org/10.1016/j.theochem.2010.02.016.
- I. Tanaka, M. Mizuno and H. Adachi, Phys. Rev. B, 56, 3536 (1997); https://doi.org/10.1103/PhysRevB.56.3536.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- M.J. Frisch, G.W. Trucks and H.B. Schlegel, Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, Connecticut (2004).
- M.-J. Xu, Y. Ni, Z.-Q. Li, S.-L. Wang, X.-H. Liu and X.-M. Dou, Chin. Phys. B, 20, 63101 (2011); https://doi.org/10.1088/1674-1056/20/6/063101.
- J.P. Hay and R.W. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799.
- R.T. Rashed, D. Al Sariya and Z.T. Sahar, Iraqi J. Appl. Phys., 10, 15 (2014).
References
M. Valášková and H. Akbulut, Adv. Sci. Eng. Med., 3, 1 (2011); https://doi.org/10.1166/asem.2011.1067.
M.-M. Bagheri-Mohagheghi, N. Shahtahmasebi, E. Mozafari and M. Shokooh-Saremi, Physica E, 41, 1757 (2009); https://doi.org/10.1016/j.physe.2009.06.009.
T.-H. Tsai, S.-C. Chiou and S.-M. Chen, Int. J. Electrochem. Sci., 6, 3333 (2011).
J.T. McCue and J.Y. Ying, Chem. Mater., 19, 1009 (2007); https://doi.org/10.1021/cm0617283.
R.S. Henrique, R.F.B. De Souza, J.C.M. Silva, J.M.S. Ayoub, R.M. Piasentin, M. Linardi, E.V. Spinacé and A.O. Santos, Int. J. Electrochem. Sci., 7, 2036 (2012).
J. Parrondo, R. Santhanam, F. Mijangos and B. Rambabu, Int. J. Electrochem. Sci., 5, 1342 (2010).
B. Devadas, M. Rajkumar, S.M. Chen and R. Saraswathi, Int. J. Electrochem. Sci., 7, 333 (2012).
S.-J. Kim, I.-S. Hwang, J.-K. Choi, Y.C. Kang and J.-H. Lee, Sens. Actuators B, 155, 512 (2011); https://doi.org/10.1016/j.snb.2010.12.055.
H. Odaka, Y. Shigesato, T. Murakami and S. Iwata, Jpn. J. Appl. Phys., 40, 3231 (2001); https://doi.org/10.1143/JJAP.40.3231.
F. Matino, L. Persano, V. Arima, D. Pisignano, R.I.R. Blyth, R. Cingolani and R. Rinaldi, Phys. Rev. B, 72, 085437 (2005); https://doi.org/10.1103/PhysRevB.72.085437.
F. Chen, Z. Huang and N. Tao, Appl. Phys. Lett., 91, 162106 (2007); https://doi.org/10.1063/1.2800303.
S. Mukhopadhyay, S. Gowtham, R. Pandey and A. Costales, J. Mole Struc. Theochem., 948, 31 (2010); https://doi.org/10.1016/j.theochem.2010.02.016.
I. Tanaka, M. Mizuno and H. Adachi, Phys. Rev. B, 56, 3536 (1997); https://doi.org/10.1103/PhysRevB.56.3536.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
M.J. Frisch, G.W. Trucks and H.B. Schlegel, Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, Connecticut (2004).
M.-J. Xu, Y. Ni, Z.-Q. Li, S.-L. Wang, X.-H. Liu and X.-M. Dou, Chin. Phys. B, 20, 63101 (2011); https://doi.org/10.1088/1674-1056/20/6/063101.
J.P. Hay and R.W. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799.
R.T. Rashed, D. Al Sariya and Z.T. Sahar, Iraqi J. Appl. Phys., 10, 15 (2014).