Main Article Content

Abstract

The structural, geometric and electronic prosperities of most stable indium oxide (In2O3) shapes in the neutral state and in both open and close forms are studied and investigated using density function theory (DFT). The ball shape structure in neutral quintet is preferred over all the other possible structures for the neutral shape. The lowest energy geometric prefers the Y shape arrangement in triplet state. The energy gap (Egap) of the most stable indium oxide shapes as a function to the shapes is also discussed.

Keywords

Indium oxide theoretical study DFT

Article Details

References

  1. M. Valášková and H. Akbulut, Adv. Sci. Eng. Med., 3, 1 (2011); https://doi.org/10.1166/asem.2011.1067.
  2. M.-M. Bagheri-Mohagheghi, N. Shahtahmasebi, E. Mozafari and M. Shokooh-Saremi, Physica E, 41, 1757 (2009); https://doi.org/10.1016/j.physe.2009.06.009.
  3. T.-H. Tsai, S.-C. Chiou and S.-M. Chen, Int. J. Electrochem. Sci., 6, 3333 (2011).
  4. J.T. McCue and J.Y. Ying, Chem. Mater., 19, 1009 (2007); https://doi.org/10.1021/cm0617283.
  5. R.S. Henrique, R.F.B. De Souza, J.C.M. Silva, J.M.S. Ayoub, R.M. Piasentin, M. Linardi, E.V. Spinacé and A.O. Santos, Int. J. Electrochem. Sci., 7, 2036 (2012).
  6. J. Parrondo, R. Santhanam, F. Mijangos and B. Rambabu, Int. J. Electrochem. Sci., 5, 1342 (2010).
  7. B. Devadas, M. Rajkumar, S.M. Chen and R. Saraswathi, Int. J. Electrochem. Sci., 7, 333 (2012).
  8. S.-J. Kim, I.-S. Hwang, J.-K. Choi, Y.C. Kang and J.-H. Lee, Sens. Actuators B, 155, 512 (2011); https://doi.org/10.1016/j.snb.2010.12.055.
  9. H. Odaka, Y. Shigesato, T. Murakami and S. Iwata, Jpn. J. Appl. Phys., 40, 3231 (2001); https://doi.org/10.1143/JJAP.40.3231.
  10. F. Matino, L. Persano, V. Arima, D. Pisignano, R.I.R. Blyth, R. Cingolani and R. Rinaldi, Phys. Rev. B, 72, 085437 (2005); https://doi.org/10.1103/PhysRevB.72.085437.
  11. F. Chen, Z. Huang and N. Tao, Appl. Phys. Lett., 91, 162106 (2007); https://doi.org/10.1063/1.2800303.
  12. S. Mukhopadhyay, S. Gowtham, R. Pandey and A. Costales, J. Mole Struc. Theochem., 948, 31 (2010); https://doi.org/10.1016/j.theochem.2010.02.016.
  13. I. Tanaka, M. Mizuno and H. Adachi, Phys. Rev. B, 56, 3536 (1997); https://doi.org/10.1103/PhysRevB.56.3536.
  14. A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
  15. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
  16. M.J. Frisch, G.W. Trucks and H.B. Schlegel, Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, Connecticut (2004).
  17. M.-J. Xu, Y. Ni, Z.-Q. Li, S.-L. Wang, X.-H. Liu and X.-M. Dou, Chin. Phys. B, 20, 63101 (2011); https://doi.org/10.1088/1674-1056/20/6/063101.
  18. J.P. Hay and R.W. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799.
  19. R.T. Rashed, D. Al Sariya and Z.T. Sahar, Iraqi J. Appl. Phys., 10, 15 (2014).