Main Article Content

Abstract

Poly(ethylene terephthalate)/poly(trimethylene terephthalate) (PET/ PTT) blends were prepared and their phase morphology, mechanical and thermal properties were investigated by scanning electron microscopy (SEM), polarized optical microscopy (POM), universal material testing machine, differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), respectively. The glass transition and SEM results suggest apparently that poly(ethylene terephthalate) and poly(trimethylene terephthalate) have good miscibility at amorphous state. The blends with more poly(ethylene terephthalate) content less likely undergo a melting/recrystallization process during DSC heating scan. In blends, poly(ethylene terephthalate) component with higher supercooling degree will crystallize first and then the crystallites of poly(ethylene terephthalate) will be the nucleating agents for poly- (trimethylene terephthalate), which greatly improves the crystallization rate of poly(trimethylene terephthalate). Because of the interaction between poly(ethylene terephthalate) and poly(trimethylene terephthalate), there are much smaller spherulites formed in blends with increasing poly(ethylene terephthalate) component. The blend with more poly- (ethylene terephthalate) contents has larger tensile strength and modulus.

Keywords

Poly(ethylene terephthalate). Poly(trimethylene terephthalate) Blends Crystallization Morphology Mechanical property

Article Details

References

  1. H.B. Ravikumar, C. Ranganathaiah, G.N. Kumaraswamy and S. Thomas, Polymer, 46, 2372 (2005); https://doi.org/10.1016/j.polymer.2004.12.058.
  2. P.A. Bhadane, M.F. Champagne, M.A. Huneault, F. Tofan and B.D. Favis, Polymer, 47, 2760 (2006); https://doi.org/10.1016/j.polymer.2006.01.065.
  3. C. Wang, C.C. Lin and L.C. Tseng, Polymer, 47, 390 (2006); https://doi.org/10.1016/j.polymer.2005.10.123.
  4. P. Supaphol, N. Dangseeyun, P. Thanomkiat and M. Nithitanakul, J. Polym. Sci., B, Polym. Phys., 42, 676 (2004); https://doi.org/10.1002/polb.10767.
  5. S. Filippi, L. Minkova, N. Dintcheva, P. Narducci and P. Magagnini, Polymer, 46, 8054 (2005); https://doi.org/10.1016/j.polymer.2005.06.090.
  6. C.F. Ou, W.C. Li and Y.H. Chen, J. Appl. Polym. Sci., 86, 1599 (2002); https://doi.org/10.1002/app.11046.
  7. C.F. Ou, J. Polym. Res., 9, 151 (2002); https://doi.org/10.1023/A:1021162506296.
  8. J.H. Chen, F.C. Tsai, Y.H. Nien and P.H. Yeh, Polymer, 46, 5680 (2005); https://doi.org/10.1016/j.polymer.2005.03.107.
  9. Z. Bartczak, V. Chiono and M. Pracella, Polymer, 45, 7549 (2004); https://doi.org/10.1016/j.polymer.2004.07.055.
  10. J. Wu, J.M. Schultz, J.M. Samon, A.B. Pangelinan and H.H. Chuah, Polymer, 42, 7141 (2001); https://doi.org/10.1016/S0032-3861(01)00042-8.
  11. J.A. Grande, Modern Plast., 12, 97 (1997).
  12. P.L. Wu and E.M. Woo, J. Polym. Sci., B, Polym. Phys., 41, 80 (2003); https://doi.org/10.1002/polb.10354.
  13. M.L. Xue, J. Sheng, Y.L. Yu and H.H. Chuah, Eur. Polym. J., 40, 811 (2004); https://doi.org/10.1016/j.eurpolymj.2003.12.009.
  14. P. Srimoaon, N. Dangseeyun and P. Supaphol, Eur. Polym. J., 40, 599 (2004); https://doi.org/10.1016/j.eurpolymj.2003.11.003.
  15. N. Dangseeyun, P. Srimoaon, P. Supaphol and M. Nithitanakul, Thermochim. Acta, 409, 63 (2004); https://doi.org/10.1016/S0040-6031(03)00331-9.
  16. C.Y. Ko, M. Chen, C.L. Wang, H.C. Wang, R.Y. Chen and I.M. Tseng, Polymer, 48, 2415 (2007); https://doi.org/10.1016/j.polymer.2007.02.042.
  17. E. Ponnusamy and T. Balakrishnan, J. Macromol. Sci. Chem., 22, 373 (1985); https://doi.org/10.1080/00222338508056609.
  18. E. Ponnusamy and T. Balakrishnan, Polym. J., 17, 473 (1985); https://doi.org/10.1295/polymj.17.473.
  19. J.W. Lee, S.W. Lee, B. Lee and M. Ree, Macromol. Chem. Phys., 202, 3072 (2001); https://doi.org/10.1002/1521-3935(20011001)202:15<3072::AID-MACP3072>3.0.CO;2-V.
  20. T.M. Wu and Y.W. Lin, J. Polym. Sci., B, Polym. Phys., 42, 4255 (2004); https://doi.org/10.1002/polb.20285.
  21. G.F. Wei, L.Y. Wang, G.K. Chen and L.X. Gu, J. Appl. Polym. Sci., 100, 1511 (2006); https://doi.org/10.1002/app.23503.
  22. T.W. Shyr, C.M. Lo and S.R. Ye, Polymer, 46, 5284 (2005); https://doi.org/10.1016/j.polymer.2005.04.030.
  23. T. Kiyotsukuri, T. Masuda and N. Tsutsumi, Polymer, 35, 1274 (1994); https://doi.org/10.1016/0032-3861(94)90023-X.
  24. G.K. Chen and L.X. Gu, Polym. Mater. Sci. Eng., 17, 141 (2001) (Chinese Journal).
  25. M. Gordon and J.S. Taylor, J. Appl. Chem., 2, 493 (1952); https://doi.org/10.1002/jctb.5010020901.
  26. T.G. Fox, Bull. Am. Phys. Soc., 2, 123 (1956).
  27. Z.B. Qiu, S. Fujinami, M. Komura, K. Nakajima, T. Ikehara and T. Nishi, Polymer, 45, 4515 (2004); https://doi.org/10.1016/j.polymer.2004.04.033.