Main Article Content

Abstract

Graphene oxide and highly reduced graphene oxide was synthesized by chemical method and characterized by FTIR, SEM and XRD. Synthesized graphene oxide (GO) and reduced graphene oxide (RGOU) was used as adsorbent to remove lead ions from aqueous solution. Batch experiments were conducted to study the effect of pH, adsorbent dosage, contact time and initial concentration of lead ion. Maximum adsorption was done in first 45 min between pH 5 and 6. It is believed that the adsorption occurs due to binding of metal with functional groups (–C-O-C, -COOH, C=O and –OH) present at the surface of graphene oxide. This adsorption method may also be used for the removal of heavy metal ions from industrial wastewater.

Keywords

Graphene oxide Reduced graphene oxide Adsorption Lead ions

Article Details

References

  1. L. Flukes, Schistosomes and P. Helicobacter, International Agency for Research on Cancer (IARC), Lyon, France, p. 58 (1994).
  2. F.L. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011.
  3. M. Grayson and K. Othumer, Encyclopedia of Chemical Technology, John Wiley & Sons, edn 43, p. 387 (1978).
  4. S.K. Quki and M. Kavannagh, Water Sci. Technol., 39, 115 (1999).
  5. V.K. Gupta, D. Mohan and S. Sharma, Sep. Sci. Technol., 33, 1331 (1998); https://doi.org/10.1080/01496399808544986.
  6. K.B.P.N. Jinadasa, C.B. Dissanayake and S.V.R. Weerasooriya, Int. J. Environ. Stud., 48, 7 (1995); https://doi.org/10.1080/00207239508710972.
  7. S.J. Allen and P.A. Brown, J. Chem. Technol. Biotechnol., 62, 17 (1995); https://doi.org/10.1002/jctb.280620103.
  8. V. Chantawong, N.W. Harvey and V.N. Bashkin, Water Air Soil Pollut., 148, 111 (2003); https://doi.org/10.1023/A:1025401927023.
  9. B. Zawisza, R. Sitko, E. Malicka and E. Talik, Anal. Methods, 5, 6425 (2013); https://doi.org/10.1039/c3ay41451e.
  10. G. Zhao, Environ. Sci. Technol., 24, 45 (2011).
  11. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist and R. Wrzalik, Dalton Trans., 42, 5682 (2013); https://doi.org/10.1039/c3dt33097d.
  12. W. Choi, I. Lahiri, R. Seelaboyina and Y.S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010); https://doi.org/10.1080/10408430903505036.
  13. A. Lerf, H. He, M. Forster and J. Klinowski, J. Phys. Chem., 102, 4477 (1998); https://doi.org/10.1021/jp9731821.
  14. W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017.
  15. P. Benes and V. Majar, Trace Chemistry of Aqueous Solutions, Elsevier Scientific Publishing Co., Amsterdam (1980).
  16. G.F. Baes Jr and R.E. Mesmer, The Hydrolysis of Cations, John Wiley & Sons, New York (1976).
  17. S. Lagergren, Vetenskapsakad. Handl., 24, 1 (1898).
  18. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916); https://doi.org/10.1021/ja02268a002.
  19. T.W. Weber and R.K. Chakravorti, AlChE J., 20, 228 (1974); https://doi.org/10.1002/aic.690200204.