Main Article Content

Abstract

Activated carbons derived from diverse carbonaceous bio-sources have been proving to be effective adsorbents in the removal of contaminants from air and water bodies. The present article reviews emphatically the activation of carbon materials by physical and chemical processes and formation of specific surface (acidic and basic) functional groups on the surface of activated carbons. These groups coupled with high surface area and porosities are endowing to the active carbons good sorption capacity towards potential pollutants through physiosorption or chemisorptions or both. These aspects have been discussed. The increase in research interest in exploring the surface affinity of activated carbons in developing simple, economical and eco-friendly methodologies in the control of toxic ions has been discussed.

Keywords

Activated Carbons Surface chemistry Toxic ions

Article Details

References

  1. A. Allwar, M.N. Ahmad and M.N.M. Asri, J. Physiol. Sci., 19, 93 (2008).
  2. R.P. Bansal and M. Goyal, Activated Carbon Adsorption, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA (2005).
  3. S. Biniak, G. Szymanski, J. Siedlewski and A. Swiatkowski, Carbon, 35, 1799 (1997); https://doi.org/10.1016/S0008-6223(97)00096-1.
  4. V.J. Inglezakis and S.G. Poulopoulos, Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications, Elsevier Science & Technology (2006).
  5. J.A. Menendez-Diaz and I.M. Gullon, in ed.: T.J.Bandosz, Types of Carbon Adsorbents and their Production, In: Activated Carbon Surfaces in Environmental Remediation, Elsevier, Netherlands, pp. 1-47 (2006).
  6. University of Kentucky, Center for Applied Energy Research, History of Carbon, (2010). www.caer.uky.edu/carbon/history/carbonhistory.shtml.
  7. H. Sontheimer, J. Crittenden and R.S. Summers, Activated Carbon for Water Treatment, Forschungstelle Engler-Bunte-Institute, Universitat Karlsruhe, Karlsruhe, Germany, edn 2 (1988).
  8. V.R. Dietz, Solid Adsorbents, Encyclopaedia of Chemical Technology, vol. 4, p. 149 (1944).
  9. D.O. Cooney, Activated Charcoal: Antidotal and other Medical Uses, Dekker, NY (1980).
  10. J.S. Mattson and H.B. Mark Jr., Activated Carbon: Surface Chemistry and Adsorption from Solution, Marcel Dekker, New York (1971).
  11. F.S. Baker, C.E. Miller, A.J. Repic and E.D. Tolles, Kirk-Othmer Encycolpedia of Chemical Technology, vol. 4, p. 1015 (1992).
  12. Z. Jiang, Y. Liu, X. Sun, F. Tian, F. Sun, C. Liang, W. You, C. Han and C. Li, Langmuir, 19, 731 (2003); https://doi.org/10.1021/la020670d.
  13. A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpaa, Chem. Eng. J., 219, 499 (2013); https://doi.org/10.1016/j.cej.2012.12.038.
  14. R.C. Bansal, J.B. Donnet and F. Stoeckli, Active Carbon, Mercel Decker, New York (1988).
  15. M.V. Navarro, N.A. Seaton, A.M. Mastral and R. Murillo, Carbon, 44, 2281 (2006); https://doi.org/10.1016/j.carbon.2006.02.029.
  16. J. Diaz-Teran, D.M. Nevskaia, A.J. Lopez-Peinado and A. Jerez, Colloids Surf. A, Physiochem & Eng. Aspects, 187-188, 167 (2001); https://doi.org/10.1016/S0927-7757(01)00622-7.
  17. F. Rodriguez-Reinoso and M. Molina-Sabio, Adv. Colloid Interface Sci., 76-77, 271 (1998); https://doi.org/10.1016/S0001-8686(98)00049-9.
  18. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas and J.J.M. Orfao, Carbon, 37, 1379 (1999); https://doi.org/10.1016/S0008-6223(98)00333-9.
  19. M.T. Izquierdo, B. Rubio, C. Mayoral and J.M. Andrés, Appl. Catal. B, 33, 315 (2001); https://doi.org/10.1016/S0926-3373(01)00192-8.
  20. G.S. Szymanski, Z. Karpinski, S. Biniak and A. Swiatkowski, Carbon, 40, 2627 (2002); https://doi.org/10.1016/S0008-6223(02)00188-4.
  21. J.W. Shim, S.J. Park and S.K. Ryu, Carbon, 39, 1635 (2001); https://doi.org/10.1016/S0008-6223(00)00290-6.
  22. C.Y. Yin, M.K. Aroua and W.A.W. Daud, Sep. Purif. Technol., 52, 403 (2007); https://doi.org/10.1016/j.seppur.2006.06.009.
  23. L.R. Radovic, C. Moreno-Castilla and J. Rivera-Utrilla, in ed.: L.R. Radovic, Carbon Materials as Adsorbents in Aqueous Solution, In: Chemistry and Physics of Carbon, Marcel Dekker: New York, vol. 27, pp. 227-405 (2001).
  24. F. Rodriguez-Reinoso, A. Linares-Solano, M. Molinasabio and D.J. Lopez-Gonalez, Adv. Sci. Technol., 1, 513 (1984).
  25. H. Marsh and F. Rodriguez-Reinoso, Activated Carbon, Elsevier Science and Technology Books, Oxford, pp. 7-15, 322-378, 401-462 (2006).
  26. Y. Guo and A.C. Lua, J. Therm. Anal. Calorim., 60, 417 (2000); https://doi.org/10.1023/A:1010137308378.
  27. L.B. McCarty, Activated Charcoal for Pesticide Deactivation, University of Florida Cooperative Extension Service (2002).
  28. B.S. Girgis and A.N.A. El-Hendawy, Micropor. Mesopor. Mater., 52, 105 (2002); https://doi.org/10.1016/S1387-1811(01)00481-4.
  29. J. Kong, Q. Yue, L. Huang, Y. Gao, Y. Sun, B. Gao, Q. Li and Y. Wang, Chem. Eng. J., 221, 62 (2013); https://doi.org/10.1016/j.cej.2013.02.021.
  30. M. Smisek and S. Cerney, Active Carbon: Manufacture, Properties and Applications, Elsevier: Amsterdam (1970).
  31. B.R. Puri, in eds.: M.J. McGuire, I.H. Suffet, Advances in Chemistry Series, American Chemical Society, Washington, DC, pp. 77-93 (1983).
  32. I.N. Ermolenko, I.P. Lyubliner and N.V. Gulko, Chemically Modified Carbon Fibers and Their Applications, VCH Publishers, New York (1990).
  33. K. Kutics and M. Suzuki, Proceedings of the 2nd Korea-Japan Symposium on Separation Technology, Seoul, pp. 395-402 (1990).
  34. C.L. Mangun, K.R. Benak, M.A. Daley and J. Economy, Chem. Mater., 11, 3476 (1999); https://doi.org/10.1021/cm990123m.
  35. H.M. Mozammel, O. Masahiro and B. Sc, Biomass Bioenergy, 22, 397 (2002); https://doi.org/10.1016/S0961-9534(02)00015-6.
  36. T. Garcia, R. Murillo, D. Cazorla-Amoros, A.M. Mastral and A. Linares-Solano, Carbon, 42, 1683 (2004); https://doi.org/10.1016/j.carbon.2004.02.029.
  37. M. Santiago, F. Stuber, A. Fortuny, A. Fabregat and J. Font, Carbon, 43, 2134 (2005); https://doi.org/10.1016/j.carbon.2005.03.026.
  38. Y. Onal, C. Akmil-Basar, C. Sarici-Ozdemir and S. Erdogan, J. Hazard. Mater., 142, 138 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.070.
  39. B.R. Puri, in ed.: P.L. Walker Jr., Chemistry and Physics of Carbon, Marcel Dekker, New York, pp. 191-282 (1970).
  40. R.C. Bansal, F.J. Vastola and P.L. Walker Jr., Carbon, 12, 355 (1974); https://doi.org/10.1016/0008-6223(74)90078-5.
  41. T. Karanfil and J.E. Kilduff, Environ. Sci. Technol., 33, 3217 (1999); https://doi.org/10.1021/es981016g.
  42. M. Jagtoyen and F. Derbyshire, Carbon, 36, 1085 (1998); https://doi.org/10.1016/S0008-6223(98)00082-7.
  43. R.L. Tseng, J. Hazard. Mater., 147, 1020 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.140.
  44. R.J.J. Jansen and H. van Bekkum, Carbon, 32, 1507 (1994); https://doi.org/10.1016/0008-6223(94)90146-5.
  45. P. Vinke, M. van der Eijk, M. Verbree, A.F. Voskamp and H. van Bekkum, Carbon, 32, 675 (1994); https://doi.org/10.1016/0008-6223(94)90089-2.
  46. F. Stoeckli, T.A. Centeno, A.B. Fuertes and J. Muniz, Carbon, 34, 1201 (1996); https://doi.org/10.1016/0008-6223(96)00088-7.
  47. C.U. Pittman Jr., G.R. He, B. Wu and S.D. Gardner, Carbon, 35, 317 (1997); https://doi.org/10.1016/S0008-6223(97)89608-X.
  48. J. Bimer, P.D. Salbut, S. Berlozecki, J.P. Boudou, E. Broniek and T. Siemieniewska, Fuel, 77, 519 (1998); https://doi.org/10.1016/S0016-2361(97)00250-0.
  49. M.C. Blanco-López, A. Martínez-Alonso and J.M.D. Tascón, Micropor. Mesopor. Mater., 34, 171 (2000); https://doi.org/10.1016/S1387-1811(99)00171-7.
  50. P.J.M. Carrott, J.M.V. Nabais, M.M.L. Ribeiro Carrott and J.A. Pajares, Carbon, 39, 1543 (2001); https://doi.org/10.1016/S0008-6223(00)00271-2.
  51. C.L. Mangun, K.R. Benak, J. Economy and K.L. Foster, Carbon, 39, 1809 (2001); https://doi.org/10.1016/S0008-6223(00)00319-5.
  52. T.C. Drage, A. Arenillas, K.M. Smith, C. Pevida, S. Piippo and C.E. Snape, Fuel, 86, 22 (2007); https://doi.org/10.1016/j.fuel.2006.07.003.
  53. C. Pevida, M.G. Plaza, B. Arias, J. Fermoso, F. Rubiera and J.J. Pis, Appl. Surf. Sci., 254, 7165 (2008); https://doi.org/10.1016/j.apsusc.2008.05.239.
  54. V.L. Snoeyink and W.J. Weber Jr., Environ. Sci. Technol., 1, 228 (1967); https://doi.org/10.1021/es60003a003.
  55. Y. El-Sayed and T.J. Bandosz, J. Colloid Interface Sci., 273, 64 (2004); https://doi.org/10.1016/j.jcis.2003.10.006.
  56. K. Laszlo and A. Szucs, Carbon, 39, 1945 (2001); https://doi.org/10.1016/S0008-6223(01)00005-7.
  57. Y. Otake and R.G. Jenkins, Carbon, 31, 109 (1993); https://doi.org/10.1016/0008-6223(93)90163-5.
  58. S.S. Barton, M.J.B. Evans, E. Halliop and J.A.F. MacDonald, Carbon, 35, 1361 (1997); https://doi.org/10.1016/S0008-6223(97)00080-8.
  59. C.O. Ania, J.B. Parra and J.J. Pis, Adsorp. Sci. Technol., 22, 337 (2004); https://doi.org/10.1260/0263617041514875.
  60. V.A. Garten and D.E. Weiss, Aust. J. Chem., 8, 68 (1955); https://doi.org/10.1071/CH9550068.
  61. V.A. Garten, D.E. Weiss and J.B. Willis, Aust. J. Chem., 10, 295 (1957a); https://doi.org/10.1071/CH9570295.
  62. V.A. Garten, D.E. Weiss and J.B. Willis, Aust. J. Chem., 10, 309 (1957b); https://doi.org/10.1071/CH9570309.
  63. M.A. Montes-Morán, D. Suárez, J.A. Menéndez and E. Fuente, Carbon, 42, 1219 (2004); https://doi.org/10.1016/j.carbon.2004.01.023.
  64. H.P. Boehm, Carbon, 32, 759 (1994); https://doi.org/10.1016/0008-6223(94)90031-0.
  65. V.L. Snoeyink and W.J. Weber Jr., in eds.: J.F. Danielli, M.D. Rosenberg, D.A. Cadenhead (Eds.), Progress in Surface and Membrane Science, Academic Press, New York, pp. 63-119 (1972).
  66. C.A. Leon y Leon and L.R. Radovic, in ed.: P.A. Thrower, Interfacial Chemistry and Electrochemistry of Carbon Surfaces, In: Chemistry and Physics of Carbon, New York: Marcel Dekker, vol. 24, pp. 213-310 (1994).
  67. J.S. Noh and J.A. Schwarz, Carbon, 28, 675 (1990); https://doi.org/10.1016/0008-6223(90)90069-B.
  68. V. Gómez-Serrano, M. Acedo-Ramos, A.J. López-Peinado and C. Valenzuela-Calahorro, Thermochim. Acta, 291, 109 (1997); https://doi.org/10.1016/S0040-6031(96)03098-5.
  69. L. Li, P.A. Quinlivan and D.R.U. Knappe, Carbon, 40, 2085 (2002); https://doi.org/10.1016/S0008-6223(02)00069-6.
  70. A. Miyazaki, K. Shibazaki, Y. Nakano, M. Ogawa and I. Balint, Chem. Lett., 33, 418 (2004); https://doi.org/10.1246/cl.2004.418.
  71. N. Wibowo, L. Setyadhi, D. Wibowo, J. Setiawan and S. Ismadji, J. Hazard. Mater., 146, 237 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.011.
  72. C.A. Leon y Leon, J.M. Solar, V. Calemma and L.R. Radovic, Carbon, 30, 797 (1992); https://doi.org/10.1016/0008-6223(92)90164-R.
  73. Y. El-Sayed and T.J. Bandosz, Langmuir, 18, 3213 (2002); https://doi.org/10.1021/la0116948.
  74. Y.F. Jia, B. Xiao and K.M. Thomas, Langmuir, 18, 470 (2002); https://doi.org/10.1021/la011161z.
  75. M.F.R. Pereira, S.F. Soares, J.J.M. Orfao and J.L. Figueiredo, Carbon, 41, 811 (2003); https://doi.org/10.1016/S0008-6223(02)00406-2.
  76. J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu and K.M. Thomas, Carbon, 33, 1641 (1995); https://doi.org/10.1016/0008-6223(95)00154-6.
  77. J. Lahaye, Fuel, 77, 543 (1998); https://doi.org/10.1016/S0016-2361(97)00099-9.
  78. M. Abe, K. Kawashima, K. Kozawa, H. Sakai and K. Kaneko, Langmuir, 16, 5059 (2000); https://doi.org/10.1021/la990976t.
  79. R. Pietrzak, Fuel, 88, 1871 (2009); https://doi.org/10.1016/j.fuel.2009.04.017.
  80. A.F. Perez-Cadenas, F.J. Maldonado-Hodar and C. Moreno-Castilla, Carbon, 41, 473 (2003); https://doi.org/10.1016/S0008-6223(02)00353-6.
  81. M.A. Montes-Moran, J.A. Menendez, E. Fuente and D. Suarez, J. Phys. Chem., 102, 5595 (1998); https://doi.org/10.1021/jp972656t.
  82. H. Darmstadt and C. Roy, Carbon, 41, 2662 (2003); https://doi.org/10.1016/S0008-6223(03)00325-7.
  83. W. Shen, Z. Li and Y. Liu, Recent Pat. Chem. Eng., 1, 27 (2008); https://doi.org/10.2174/2211334710801010027.
  84. A. Contescu, M. Vass, C. Contescu, K. Putyera and J.A. Schwarz, Carbon, 36, 247 (1998); https://doi.org/10.1016/S0008-6223(97)00168-1.
  85. H.P. Boehm, Carbon, 40, 145 (2002); https://doi.org/10.1016/S0008-6223(01)00165-8.
  86. J. Phillips, Energeia, 7, 1 (1996).
  87. E. Papirer, S. Li and J.B. Donnet, Carbon, 25, 243 (1987); https://doi.org/10.1016/0008-6223(87)90122-9.
  88. A. Dandekar, R.T.K. Baker and M.A. Vannice, Carbon, 36, 1821 (1998); https://doi.org/10.1016/S0008-6223(98)00154-7.
  89. U. Zielke, K.J. Huttinger and W.P. Hoffman, Carbon, 34, 983 (1996); https://doi.org/10.1016/0008-6223(96)00032-2.
  90. K. Kaneko, Y. Nakahigashi and K. Nagata, Carbon, 26, 327 (1988); https://doi.org/10.1016/0008-6223(88)90223-0.
  91. J.A. Menéndez, M.J. Illán-Gómez, C.A.L. y León and L.R. Radovic, Carbon, 33, 1655 (1995); https://doi.org/10.1016/0008-6223(95)96817-R.
  92. S. Shin, J. Jang, S.H. Yoon and I. Mochida, Carbon, 35, 1739 (1997); https://doi.org/10.1016/S0008-6223(97)00132-2.
  93. C. Moreno-Castilla, Carbon, 42, 83 (2004); https://doi.org/10.1016/j.carbon.2003.09.022.
  94. N.R. Khalili, M. Campbell, G. Sandi and J. Golas, Carbon, 38, 1905 (2000); https://doi.org/10.1016/S0008-6223(00)00043-9.
  95. Z. Hu, M.P. Srinivasan and Y. Nia, Carbon, 39, 877 (2001); https://doi.org/10.1016/S0008-6223(00)00198-6.
  96. A.N.A. El-Hendawy, Carbon, 41, 713 (2003); https://doi.org/10.1016/S0008-6223(03)00029-0.
  97. J.W. Patrick, Porosity in Carbons: Characterisation and Applications, Edward Arnold, London (1995).
  98. H. Jin, S.E. Park, J.M. Lee and S.K. Ryu, Carbon, 34, 429 (1996); https://doi.org/10.1016/0008-6223(96)87613-5.
  99. I. Mochida, Y. Kawabuchi, S. Kawano, Y. Matsumura and M. Yoshikawa, Fuel, 76, 543 (1997); https://doi.org/10.1016/S0016-2361(96)00223-2.
  100. T. Budinova, E. Ekinci, F. Yardim, A. Grimm, E. Björnbom, V. Minkova and M. Goranova, Fuel Process. Technol., 87, 899 (2006); https://doi.org/10.1016/j.fuproc.2006.06.005.
  101. S. Altenor, B.C. Melane and S. Gaspard, Int. J. Environ. Technol. Manage., 10, 308 (2009); https://doi.org/10.1504/IJETM.2009.023737.
  102. V. Bello-Huitle, P. Atenco-Fernández and R. Reyes-Mazzoco, Rev. Mex. Ing. Quim., 9, 313 (2010).
  103. F.C. Wu, R.L. Tseng and R.S. Juang, Sep. Purif. Technol., 47, 10 (2005); https://doi.org/10.1016/j.seppur.2005.03.013.
  104. R.M. Shashikant and I. Divyarani, Int. J. Res. Eng. Technol., 2, 305 (2013).
  105. M. Israt Jahan, M. Abdul Motin, M. Moniuzzan and M. Asadullah, Indian J. Chem. Technol., 15, 413 (2008).
  106. G.N. Manju, C. Raji and T.S. Anirudhan, Water Res., 32, 3062 (1998); https://doi.org/10.1016/S0043-1354(98)00068-2.
  107. K. Alagesan and S. Malairajan, Int. J. Hazard. Mater., 2, 1 (2014).
  108. T. Bohli, I. Villaescusa and A. Ouederni, J. Chem. Eng. Process. Technol., 4, 1 (2013); https://doi.org/10.4172/2157-7048.1000158.
  109. M. Belmedani, H. Hadoun and Z. Sadaoui, J. Chem. Chem. Eng., 7, 979 (2013).
  110. A.S. Sartape, A.M. Mandhare, P.P. Salvi, D.K. Pawar and S.S. Kolekar, Desalinat. Water Treat., 51, 4638 (2013); https://doi.org/10.1080/19443994.2012.759158.
  111. G. Venkatesan and U. Senthilnathan, Res. J. Chem. Environ., 17, 19 (2013).
  112. A. Eman, Int. J. Recent Technol. Eng., 3, 6 (2014).
  113. J. Nwabanne and P. Igbokwe, Int. J. Multidiscipl. Sci. Eng., 3, 46 (2012).
  114. J.C. Moreno-Pirajan, V.S. Garcia-Cuello and L. Giraldo, Adsorption, 17, 505 (2011); https://doi.org/10.1007/s10450-010-9311-5.
  115. M. Manjula Devi and S. Manonmani, Orient. J. Chem., 31, 531 (2015); https://doi.org/10.13005/ojc/310166.
  116. A.S. Sartape, P.D. Raut and S.S. Kolekar, Adsorpt. Sci. Technol., 28, 547 (2010); https://doi.org/10.1260/0263-6174.28.6.547.
  117. K.B. Nagashanmugama and K. Srinivasanb, Indian J. Chem. Technol., 18, 207 (2011).
  118. Z.A. Alothman, M. Naushad and R. Ali, Sci. Pollut. Res., 20, 3351 (2013); https://doi.org/10.1007/s11356-012-1259-4.
  119. P. Thamilarasu and K. Karunakaran, Can. J. Chem. Eng., 91, 9 (2013); https://doi.org/10.1002/cjce.20675.
  120. M. Owlad, M.K. Aroua and W.M.A. Wan Daud, Bioresour. Technol., 101, 5098 (2010); https://doi.org/10.1016/j.biortech.2010.01.135.
  121. M. Momcilovic, M. Purenovic, A. Bojic, A. Zarubica and M. Randelovic, Desalination, 276, 53 (2011); https://doi.org/10.1016/j.desal.2011.03.013.
  122. V. Hernandez-Montoya, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, M.A. Montes-Moran and M.A. Perez-Cruz, J. Anal. Appl. Pyrolysis, 92, 143 (2011); https://doi.org/10.1016/j.jaap.2011.05.008.
  123. Z.Z. Chowdhury, S.M. Zain, R.A. Khan, R.F. Rafique and K. Khalid, BioResources, 7, 2895 (2012).
  124. M. Moyo, L. Chikazaza, B.C. Nyamunda and U. Guyo, J. Chem., Article ID 508934 (2013); https://doi.org/10.1155/2013/508934.
  125. C. Song, S. Wu, M. Cheng, P. Tao, M. Shao and G. Gao, Sustainability, 6, 86 (2013); https://doi.org/10.3390/su6010086.
  126. B. Nale, J. Kagbu, A. Uzairu, E. Nwankwere, S. Saidu and H. Musa, Der Chem. Sinica, 3, 302 (2012).
  127. N.S. Awwad, A.A. El-Zahhar, A.M. Fouda and H.A. Ibrahium, J. Environ. Chem. Eng., 1, 416 (2013); https://doi.org/10.1016/j.jece.2013.06.006.
  128. M. Zabihi, A. Haghighi Asl and A. Ahmadpour, J. Hazard. Mater., 174, 251 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.044.
  129. A. Wahby, Z. Abdelouahab-Reddam, R. El Mail, M. Stitou, J. Silvestre-Albero, A. Sepúlveda-Escribano and F. Rodríguez-Reinoso, Adsorption, 17, 603 (2011); https://doi.org/10.1007/s10450-011-9334-6.
  130. A.A. Ismaiel, M.K. Aroua and R. Yusoff, Chem. Eng. J., 225, 306 (2013); https://doi.org/10.1016/j.cej.2013.03.082.
  131. A. Animesh and K.G. Puneet, Int. J. Adv. Res., 3, 412 (2015).
  132. T. Depci, A.R. Kul and Y. Onal, Chem. Eng. J., 200-202, 224 (2012); https://doi.org/10.1016/j.cej.2012.06.077.
  133. A.O. Dada, A.P. Olalekan and A.M. Olatunya, IOSR J. Appl. Chem., 3, 38 (2012); https://doi.org/10.9790/5736-0313845.
  134. A. Omri and M. Benzina, Alexandria Eng. J., 51, 343 (2012).
  135. A.A. Hussain, S.R. Mohammed, M. Nallu and S. Arivoli, J. Chem. Pharm. Res., 4, 2325 (2012).
  136. R. Prabakaran and S. Arivoli, Eng. Technol. Res., 2, 271 (2013).
  137. C. Namasivayam and D. Sangeetha, Bioresour. Technol., 97, 1194 (2006); https://doi.org/10.1016/j.biortech.2005.05.008.
  138. C. Namasivayam and D. Sangeetha, D., Adsorption, 12, 103 (2006); https://doi.org/10.1007/s10450-006-0373-3.
  139. D. Ramesh, P.M. Kiruthiga, B.Y. Hirpaye and A.K. Berekute, Int. J. Water Res., 5, 18 (2015).
  140. D. Hayelom, G. Nigus and A. Adhena, J. Innov. Sci. Res., 9, 317 (2014).
  141. E.S. Abechi, C.E. Gimba, A. Uzairu and J.A. Kagbu, Arch. Appl. Sci. Res., 3, 154 (2011).
  142. A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes and V.C. Almeida, Chem. Eng. J., 174, 117 (2011); https://doi.org/10.1016/j.cej.2011.08.058.
  143. M.A. Rahman, S.M. Rahul Amin and A.M. Shafiqul Alan, Dhaka Univ. J. Sci., 60, 185 (2012).
  144. U.V. Ladhe, S.K. Wankhede, V.T. Patile and P.R. Patil, J. Appl. Sci. Environ. Sanit., 6, 149 (2011).
  145. S. Yadav, D.K. Tyagi and O.P. Yadav, Int. J. Chem. Res., 2, 59 (2011).
  146. L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang and Y. Liu, Colloids Surf., 446, 1 (2014); https://doi.org/10.1016/j.colsurfa.2014.01.030.
  147. C.A. Okoli, O.D. Onukwuli, C.F. Okey-Onyesolu and C.C. Okoye, Eur. Sci. J., 11, 190 (2015).
  148. R. Ingole and D. Lataye, J. Hazard. Toxic Radioact. Waste, 19, 04015002 (2015); https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000271.
  149. Y.S. Mohammad, E.M. Shaibu-Imodagbe, S.B. Igboro, A. Giwa and C.A. Okuofu, Iran. J. Energy Environ., 6, 20 (2015).
  150. M.H. El-Naas, S. Al-Zuhair and M.A. Alhaija, Chem. Eng. J., 162, 997 (2010); https://doi.org/10.1016/j.cej.2010.07.007.
  151. B.K. Hamad, A. Md. Noor and A.A. Rahim, J. Physiol. Sci., 22, 39 (2011).
  152. F.W. Shaarani and B.H. Hameed, Desalination, 255, 159 (2010); https://doi.org/10.1016/j.desal.2009.12.029.
  153. H.N.I. Nassar, M.Sc. Thesis, Nitrate and Nitrite Ion Removal from Aqueous Solutions by Activated Carbon Prepared from Olive Stones, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine (2012).
  154. M. Mohammad, Int. J. Biosci., 6, 375 (2015); https://doi.org/10.12692/ijb/6.2.375-379.
  155. C. Namasivayam and D. Sangeetha, Indian J. Chem. Technol., 12, 513 (2005).
  156. A. Arulanantham, T.V. Ram Krishna and N.B. Subramanian, Indian J. Environ. Prot., 12, 531 (1992).
  157. A.A.M. Daifullah, S.M. Yakout and S.A. Elreefy, J. Hazard. Mater., 147, 633 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.062.
  158. G. Alagumuthu and M. Rajan, Chem. Eng. J., 158, 451 (2010a); https://doi.org/10.1016/j.cej.2010.01.017.
  159. Y. Hanumantharao, K. Medikondu and R. Kunta, Anal. Sci. Technol., 3, 167 (2012); https://doi.org/10.5355/JAST.2012.167.
  160. M. Suneetha, B.S. Sundar and K. Ravindhranath, J. Anal. Sci. Technol., 6, 15 (2015); https://doi.org/10.1186/s40543-014-0042-1.
  161. M. Bele, A. Kodre, I. Arcon, J. Grdadolnik, S. Pejovnik and J.O. Besenhard, Carbon, 36, 1207 (1998); https://doi.org/10.1016/S0008-6223(98)00099-2.
  162. A.N. Malhas, R.A. Abuknesha and R.G. Price, J. Immunol. Methods, 264, 37 (2002); https://doi.org/10.1016/S0022-1759(02)00087-X.
  163. M. Pirbazari, B.N. Badriyha and R.J. Miltner, J. Environ. Eng. ASCE, 117, 80 (1991).
  164. J.-Y. Hu, T. Aizawa, Y. Ookubo, T. Morita and Y. Magara, Water Res., 32, 2593 (1998); https://doi.org/10.1016/S0043-1354(98)00014-1.
  165. J.J. McCreary and V.L. Snoeyink, Water Res., 14, 151 (1980); https://doi.org/10.1016/0043-1354(80)90231-6.
  166. M.C. Lee, J.C. Crittenden, V.L. Snoeyink and M. Ari, J. Environ. Eng., 109, 631 (1983).
  167. K. Urano, E. Yamamoto, M. Tonegawa and K. Fujie, Water Res., 25, 1459 (1991); https://doi.org/10.1016/0043-1354(91)90175-P.
  168. J.L. Sotelo, G. Ovejero, J.A. Delgado and I. Martinez, Water Res., 36, 599 (2002); https://doi.org/10.1016/S0043-1354(01)00261-5.
  169. D.M. Giusti, R.A. Conway and C.T. Lawson, J. Water Pollut. Control Fed., 46, 947 (1974).
  170. M.C. Annesini, F. Gironi, M. Ruzzi and C. Tomei, Water Res., 21, 567 (1987); https://doi.org/10.1016/0043-1354(87)90065-0.
  171. I.N. Najm, V.L. Snoeyink and Y. Richard, Water Res., 27, 551 (1993); https://doi.org/10.1016/0043-1354(93)90164-D.
  172. M.S. Shafeeyan, W.M.A.W. Daud, A. Houshmand and A. Shamiri, J. Anal. Appl. Pyrol., 89, 143 (2010); https://doi.org/10.1016/j.jaap.2010.07.006.
  173. B. Raj and K. Bhanu Sankara Rao, Frontiers in Materials Science, Universities Press, The Indian Academy of Sciences, p. 342 (2005).