Main Article Content

Abstract

Bacterial cellulose is a promising versatile biomaterial and can be used in a wide variety of applied scientific endeavours. This naturally occurrence polymer of glucose can be synthesized by some bacteria (Acetobacter xylinum) to form microfibrils with complex, multilevel super macromolecular architecture. Similar in trees, plants and some marine creatures (tunicates), these microfibrils in bacterial  cellulose act as the main reinforcing element. The strength comes from a complex structure with the individual superfine fibrils having diameters in nano scale and each nano fibrils contains ordered nanocrystallite and low ordered nano-domain. Cellulosic nanofibrils present a very high surface area, which makes the adhesion properties the most important parameter to control for nanocomposite applications. This work discusses about the preliminary study of bacterial cellulose properties due to its functional group behaviour compared with and without acid treatment. The study also covered the differences between pure cellulose and bacterial cellulose in order to prove that the bacterial cellulose is also one of the pure cellulose that have quite similar functional group with pure cellulose itself.

Keywords

Acetobacter xylinum Bacterial cellulose Acid hydrolysis

Article Details

References

  1. N.A.M.Z. Abidin, N. Azraaie, N.A. Ibrahim, N.A.M. Razali, F.A. Aziz and S. Radiman, Adv. Mater. Res., 1087, 40 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1087.40.
  2. N.A.M. Razali, N. Azraaie, N.A.M.Z. Abidin, N.A. Ibrahim, F.A. Aziz and S.A. Rahman, Adv. Mater. Res., 1087, 35 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1087.35.
  3. N.A. Ibrahim, N. Azraaie, N.A.M.Z. Abidin, N.A.M. Razali, F.A. Aziz and S. Zakaria, Adv. Mater. Res., 1087, 197 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1087.197.
  4. F. Esa, S.M. Tasirin and N.A. Rahman, Agric. Agric. Sci. Proced., 2, 113 (2014); https://doi.org/10.1016/j.aaspro.2014.11.017.
  5. R.C. Sun, BioResources, 4, 452 (2008).
  6. J.K. Park, Y.H. Park and J.Y. Jung, Biotechnol. Bioprocess Eng.; BBE, 8, 83 (2003); https://doi.org/10.1007/BF02940261.
  7. A.J. Brown, J. Chem. Soc. Transac., 49, 432 (1886); https://doi.org/10.1039/CT8864900432.
  8. P. Chen, S.Y. Cho and H.J. Jin, Macromol. Res., 18, 309 (2010); https://doi.org/10.1007/s13233-010-0404-5.
  9. O.A. Saibuatong and M. Phisalaphong, Carbohyd. Polym., 79, 455 (2010); https://doi.org/10.1016/j.carbpol.2009.08.039.
  10. Y. Dahman, K.E. Jayasuriya and M. Kalis, Appl. Biochem. Biotechnol., 162, 1647 (2010); https://doi.org/10.1007/s12010-010-8946-8.
  11. C. Castro, R. Zuluaga, J.L. Putaux, G. Caro, I. Mondragon and P. Gañán, Carbohydr. Polym., 84, 96 (2011); https://doi.org/10.1016/j.carbpol.2010.10.072.
  12. S.M. Keshk and K. Sameshima, Enzyme Microb. Technol., 40, 4 (2006); https://doi.org/10.1016/j.enzmictec.2006.07.037.
  13. N. Shah, M. Ul-Islam, W.A. Khattak and J.K. Park, Carbohydr. Polym., 98, 1585 (2013); https://doi.org/10.1016/j.carbpol.2013.08.018.
  14. H. Zhu, S. Jia, H. Yang, W. Tang, Y. Jia and Z. Tan, Food Sci. Biotechnol., 19, 1479 (2010); https://doi.org/10.1007/s10068-010-0211-y.
  15. P.R. Chawla, I.B. Bajaj, S.A. Survase and R.S. Singhal, Food Technol. Biotechnol., 47, 107 (2009).
  16. G. Gayathry and G. Gopalaswamy, Indian J. Fibre Textile Res., 39, 93 (2014).
  17. S. Gea, E. Bilotti, C.T. Reynolds, N. Soykeabkeaw and T. Peijs, Mater. Lett., 64, 901 (2010); https://doi.org/10.1016/j.matlet.2010.01.042.
  18. K.Y. Lee, J.J. Blaker and A. Bismarck, Compos. Sci. Technol., 69, 2724 (2009); https://doi.org/10.1016/j.compscitech.2009.08.016.
  19. Y. Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi and S. Mitsuhashi, J. Mater. Sci., 25, 2997 (1990); https://doi.org/10.1007/BF00584917.
  20. J. Shah and R.M. Brown, Appl. Microbiol. Biotechnol., 66, 352 (2005); https://doi.org/10.1007/s00253-004-1756-6.
  21. N. Halib, M.C.I. Amin, I. Ahmad, Z. Hashim and N. Jamal, Sains Malays., 38, 785 (2009).
  22. N. Halib, M.C.I. Mohd Amin and I. Ahmad, J. Appl. Polym. Sci., 116, 2920 (2010); https://doi.org/10.1002/app.31857.
  23. W. Czaja, A. Krystynowicz, S. Bielecki and R.M. Brown Jr., Biomaterials, 27, 145 (2006); https://doi.org/10.1016/j.biomaterials.2005.07.035.
  24. J.D. Fontana, A.M. de Souza, C.K. Fontana, I.L. Torriani, J.C. Moreschi, B.J. Gallotti, S.J. de Souza, G.P. Narcisco, J.A. Bichara and L.F.X. Farah, Appl. Biochem. Biotechnol., 24, 253 (1990); https://doi.org/10.1007/BF02920250.
  25. H. Bäckdahl, G. Helenius, A. Bodin, U. Nannmark, B.R. Johansson, B. Risberg and P. Gatenholm, Biomaterials, 27, 2141 (2006); https://doi.org/10.1016/j.biomaterials.2005.10.026.
  26. P.A. Charpentier, A. Maguire and W.K. Wan, Appl. Surf. Sci., 252, 6360 (2006); https://doi.org/10.1016/j.apsusc.2005.09.064.
  27. N. Halib, M.C.I.M. Amin and I. Ahmad, Sains Malays., 41, 205 (2012).
  28. J. Ramírez-Flores, E. Rubio, V. Rodríguez-Lugo and V.M. Castaño, Rev. Adv. Mater. Sci., 21, 211 (2009).
  29. R.H. Marchessault and P.R. Sundararajan, in ed.: G.O. Aspinall, Cellulose, In: The Polysaccharides, Academic Press Inc., New York, vol. 2, pp. 12-95 (1983).