Main Article Content

Abstract

The magnetic properties of graphite oxide (GO) and reduced graphene oxide (RGO), synthesized by chemical methods starting from  graphite are reported. A weak paramagnetism, below ~ 50 K, has been found for both samples down to 1.6 K, the lowest measured  temperature. The magnetization vs. H/T curves follow the Brillouin function behaviour. The reduced graphene oxide sample, which is  repared by chemical reduction followed by thermal annealing showed enhanced magnetization when compared with that of graphene oxide. The observed values of magnetization correspond to defect induced magnetic moments of 1.91 × 1018 and 5.80 × 1018 per g of graphite oxide and reduced graphene oxide respectively. Our results and the contradictory magnetic properties (i.e., para-, superpara-,  ferro-, antiferro-magnetic) of grapheme reported in the literature have been discussed on the basis of current understanding of the subject area.

Keywords

Graphite oxide Reduced graphene oxide Magnetic properties revisited

Article Details

References

  1. C.N.R. Rao, H.S.S.R. Matte, K.S. Subrahmanyam and U. Maitra, Chem. Sci., 3, 45 (2012); https://doi.org/10.1039/C1SC00726B.
  2. A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849.
  3. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed., 48, 7752 (2009); https://doi.org/10.1002/anie.200901678.
  4. E.P. Randviir, D.A.C. Brownson and C.E. Banks, Mater. Today, 17, 426 (2014); https://doi.org/10.1016/j.mattod.2014.06.001.
  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438, 197 (2005); https://doi.org/10.1038/nature04233.
  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gregorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896.
  7. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009); https://doi.org/10.1021/nl801827v.
  8. G.-H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande, N. Petrone, A.G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J.W. Kysar and J. Hone, Science, 340, 1073 (2013); https://doi.org/10.1126/science.1235126.
  9. J. Hass, R. Feng, J.E. Millán-Otoya, X. Li, M. Sprinkle, P.N. First, W.A. de Heer, E.H. Conrad and C. Berger, Phys. Rev. B, 75, 214109 (2007); https://doi.org/10.1103/PhysRevB.75.214109.
  10. V.Y. Aristov, G. Urbanik, K. Kummer, D.V. Vyalikh, O.V. Molodtsova, A.B. Preobrajenski, A.A. Zakharov, C. Hess, T. Hänke, B. Büchner, I. Vobornik, J. Fujii, G. Panaccione, Y.A. Ossipyan and M. Knupfer, Nano Lett., 10, 992 (2010); https://doi.org/10.1021/nl904115h.
  11. D. Li, M.B. Müller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nano-technol., 3, 101 (2008); https://doi.org/10.1038/nnano.2007.451.
  12. M. Lotya, P.J. King, U. Khan, S. De and J.N. Coleman, ACS Nano, 4, 3155 (2010); https://doi.org/10.1021/nn1005304.
  13. M.J. Allen, V.C. Tung and R.B. Kaner, Chem. Rev., 110, 132 (2010); https://doi.org/10.1021/cr900070d.
  14. S. Park and R.S. Ruoff, Nat. Nanotechnol., 4, 217 (2009); https://doi.org/10.1038/nnano.2009.58.
  15. O.V. Yazyev, Rep. Prog. Phys., 73, 056501 (2010); https://doi.org/10.1088/0034-4885/73/5/056501.
  16. A. Buchsteiner, A. Lerf and J. Pieper, J. Phys. Chem. B, 110, 22328 (2006); https://doi.org/10.1021/jp0641132.
  17. S. Mao, H. Pu and J. Chen, RSC Adv., 2, 2643 (2012); https://doi.org/10.1039/c2ra00663d.
  18. D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2010); https://doi.org/10.1039/B917103G.
  19. W. Gao, L.B. Alemany, L. Ci and P.M. Ajayan, Nat. Chem., 1, 403 (2009); https://doi.org/10.1038/nchem.281.
  20. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Adv. Mater., 22, 3906 (2010); https://doi.org/10.1002/adma.201001068.
  21. R.R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, A.V. Krasheninnikov, J. Keinonen, T. Thomson, A.K. Geim and I.V. Grigorieva, Nat. Phys., 8, 199 (2012); https://doi.org/10.1038/nphys2183.
  22. J. Cervenka, M.I. Katsnelson and C.F.J. Flipse, Nat. Phys., 5, 840 (2009); https://doi.org/10.1038/nphys1399.
  23. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang and Y. Chen, Nano Lett., 9, 220 (2009); https://doi.org/10.1021/nl802810g.
  24. H.S.S.R. Matte, K.S. Subrahmanyam and C.N.R. Rao, J. Phys. Chem. C, 113, 9982 (2009); https://doi.org/10.1021/jp903397u.
  25. M. Sepioni, R.R. Nair, S. Rablen, J. Narayanan, F. Tuna, R. Winpenny, A.K. Geim and I.V. Grigorieva, Phys. Rev. Lett., 105, 207205 (2010); https://doi.org/10.1103/PhysRevLett.105.207205.
  26. T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar and A. Setzer, Adv. Mater., 24, 5826 (2012); https://doi.org/10.1002/adma.201202219.
  27. S.K. Sarkar, K.K. Raul, S.S. Pradhan, S. Basu and A. Nayak, Physica E, 64, 78 (2014); https://doi.org/10.1016/j.physe.2014.07.014.
  28. O.V. Yazyev, Phys. Rev. Lett., 101, 037203 (2008); https://doi.org/10.1103/PhysRevLett.101.037203.
  29. O.V. Yazyev and M.I. Katsnelson, Phys. Rev. Lett., 100, 047209 (2008); https://doi.org/10.1103/PhysRevLett.100.047209.
  30. D. Soriano, F. Munoz-Rojas, J. Fernández-Rossier and J.J. Palacios, Phys. Rev. B, 81, 165409 (2010); https://doi.org/10.1103/PhysRevB.81.165409.
  31. V.L.J. Joly, K. Takahara, K. Takai, K. Sugihara, T. Enoki, M. Koshino and H. Tanaka, Phys. Rev. B, 81, 115408 (2010); https://doi.org/10.1103/PhysRevB.81.115408.
  32. O.V. Yazyev and L. Helm, Phys. Rev. B, 75, 125408 (2007); https://doi.org/10.1103/PhysRevB.75.125408.
  33. J. Jung, T. Pereg-Barnea and A.H. MacDonald, Phys. Rev. Lett., 102, 227205 (2009); https://doi.org/10.1103/PhysRevLett.102.227205.
  34. M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe, J. Phys. Soc. Jpn., 65, 1920 (1996); https://doi.org/10.1143/JPSJ.65.1920.
  35. Y.C. Ma, P.O. Lehtinen, A.S. Foster and R.M. Nieminen, New J. Phys., 6, 68 (2004); https://doi.org/10.1088/1367-2630/6/1/068.
  36. L. Chen, L. Guo, Z. Li, H. Zhang, J. Lin, J. Huang, S. Jin and X. Chen, Sci. Rep., 3, 2599 (2013); https://doi.org/10.1038/srep02599.
  37. D. Lee, J. Seo, X. Zhu, J.M. Cole and H. Su, Appl. Phys. Lett., 106, 172402 (2015); https://doi.org/10.1063/1.4919529.
  38. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
  39. A.M. Dimiev and J.M. Tour, ACS Nano, 8, 3060 (2014); https://doi.org/10.1021/nn500606a.
  40. D.W. Boukhvalov, J. Phys. Chem. C, 118, 27594 (2014); https://doi.org/10.1021/jp509659p.
  41. D. Pacilé, J.C. Meyer, A. Fraile Rodríguez, M. Papagno, C. Gómez-Navarro, R.S. Sundaram, M. Burghard, K. Kern, C. Carbone and U. Kaiser, Carbon, 49, 966 (2011); https://doi.org/10.1016/j.carbon.2010.09.063.
  42. D. Pandey, R. Reifenberger and R. Piner, Surf. Sci., 602, 1607 (2008); https://doi.org/10.1016/j.susc.2008.02.025.
  43. C.K. Chua and M. Pumera, Chem. Soc. Rev., 43, 291 (2014); https://doi.org/10.1039/C3CS60303B.
  44. I.K. Moon, J. Lee, R.S. Ruoff and H. Lee, Nat. Commun., 1, 1 (2010); https://doi.org/10.1038/ncomms1067.
  45. C.K. Chua, A. Ambrosi and M. Pumera, J. Mater. Chem., 22, 11054 (2012); https://doi.org/10.1039/c2jm16054d.
  46. F. Tuinstra and J.L. Koenig, J. Chem. Phys., 53, 1126 (1970); https://doi.org/10.1063/1.1674108.
  47. Y. Si and E.T. Samulski, Nano Lett., 8, 1679 (2008); https://doi.org/10.1021/nl080604h.
  48. S. Stankovich, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Carbon, 44, 3342 (2006); https://doi.org/10.1016/j.carbon.2006.06.004.
  49. C.K. Chua and M. Pumera, J. Mater. Chem. A, 1, 1892 (2013); https://doi.org/10.1039/C2TA00665K.
  50. E.H. Lieb, Phys. Rev. Lett., 62, 1201 (1989); https://doi.org/10.1103/PhysRevLett.62.1201.
  51. D.W. Boukhvalov, Phys. Chem. Chem. Phys., 12, 15367 (2010); https://doi.org/10.1039/c0cp01009j.
  52. D.W. Boukhvalov, RSC Adv., 3, 7150 (2013); https://doi.org/10.1039/c3ra23372c.
  53. E.J.G. Santos, A. Ayuela and D. Sánchez-Portal, New J. Phys., 14, 043022 (2012); https://doi.org/10.1088/1367-2630/14/4/043022.
  54. M. Wang, W. Huang, M.B. Chan-Park and C.M. Li, Nanotechnology, 22, 105702 (2011); https://doi.org/10.1088/0957-4484/22/10/105702.
  55. T. Tang, N. Tang, Y. Zheng, X. Wan, Y. Liu, F. Liu, Q. Xu and Y. Du, Sci. Rep., 5, 8848 (2015); https://doi.org/10.1038/srep08448.
  56. T. Tang, F. Liu, Y. Liu, X. Li, Q. Xu, Q. Feng, N. Tang and Y. Du, Appl. Phys. Lett., 104, 123104 (2014); https://doi.org/10.1063/1.4869827.
  57. S.C. Ray, N. Soin, T. Makgato, C.H. Chuang, W.F. Pong, S.S. Roy, S.K. Ghos, A.M. Strydom and J.A. McLaughim, Sci. Rep., 4, 3862 (2014); https://doi.org/10.1038/srep03862.
  58. K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller and M. Chhowalla, Nano Lett., 9, 1058 (2009); https://doi.org/10.1021/nl8034256.
  59. A. Lerf, H. He, M. Forster and J. Klinowski, J. Phys. Chem. B, 102, 4477 (1998); https://doi.org/10.1021/jp9731821.
  60. W.W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D.X. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen and R.S. Ruoff, Science, 321, 1815 (2008); https://doi.org/10.1126/science.1162369.
  61. H. Kumazaki and D. S. Hirashima, J. Phys. Soc. Jpn., 77, 044705 (2008); https://doi.org/10.1143/JPSJ.77.044705.
  62. S. Bhowmick and V.B. Shenoy, J. Chem. Phys., 128, 244717 (2008); https://doi.org/10.1063/1.2943678.
  63. H. Lee, Y.-W. Son, N. Park, S. Han and J. Yu, Phys. Rev. B, 72, 174431 (2005); https://doi.org/10.1103/PhysRevB.72.174431.
  64. S. Banerjee, M. Sardar, N. Gayathri, A.K. Tyagi and B. Raj, Phys. Rev. B, 72, 075418 (2005); https://doi.org/10.1103/PhysRevB.72.075418.
  65. S. Banerjee, M. Sardar, N. Gayathri, A.K. Tyagi and B. Raj, Appl. Phys. Lett., 88, 062111 (2006); https://doi.org/10.1063/1.2166697.
  66. S. Panigrahi, A. Bhattacharya, D. Bandyopadhyay, S.J. Grabowski, D. Bhattacharyya and S. Banerjee, J. Phys. Chem. C, 115, 14819 (2011); https://doi.org/10.1021/jp2027466.
  67. K. Bagani, M.K. Ray, B. Satpati, N.R. Ray, M. Sardar and S. Banerjee, J. Phys. Chem. C, 118, 13254 (2014); https://doi.org/10.1021/jp503034d.
  68. K. Bagani, A. Bhattacharya, J. Kaur, A. Rai Chowdhury, B. Ghosh, M. Sardar and S. Banerjee, J. Appl. Phys., 115, 023902 (2014); https://doi.org/10.1063/1.4861173.
  69. Y.F. Wang, S.B. Singh, M.V. Limaye, Y.C. Shao, S.H. Hsieh, L.Y. Chen, H.C. Hsueh, H.T. Wang, J.W. Chiou, Y.C. Yeh, C.W. Chen, C.H. Chen, S.C. Ray, J. Wang, W.F. Pong, Y. Takagi, T. Ohigashi, T. Yokoyama and N. Kosugi, Sci. Rep., 5, 15439 (2015); https://doi.org/10.1038/srep15439.
  70. M.D. Mukadam and S.M. Yusuf, Physica B, 403, 2602 (2008); https://doi.org/10.1016/j.physb.2008.01.022.
  71. A.N. Andriotis, R. Michael Sheetz and M. Menon, J. Phys. Condens. Matter, 22, 334210 (2010); https://doi.org/10.1088/0953-8984/22/33/334210.
  72. Z.H. Zhu, D.Q. Gao, Z.L. Yang, J. Zhang, Z.H. Shi, Z.P. Zhang and D.S. Xue, Mod. Phys. Lett. B, 27, 1350031 (2013); https://doi.org/10.1142/S0217984913500310.