Main Article Content

Abstract

Fouling problems have stimulated tremendous researches in the development of environmentally friendly antifouling materials. Various preparation methods have been proposed and successfully used in marine antifouling coatings. The present paper simply reviewed the main antifouling technologies such as low surface energy coatings mainly include silicone and fluorinated polymers,  egradable self-polishing coatings, bio-inspired coatings with micro-nano structure surface, PEG-based antifouling coatings and other  ntimicrobial coatings as well as membranes coupled with nanoparticles, respectively.

Keywords

Marine antifouling coating Low surface energy Degradable

Article Details

References

  1. M.R. Detty, R. Ciriminna, F.V. Bright and M. Pagliaro, Acc. Chem. Res., 47, 678 (2014); https://doi.org/10.1021/ar400240n.
  2. N. Bellotti and R. Romagnoli, Ind. Eng. Chem. Res., 53, 14559 (2014); https://doi.org/10.1021/ie5015734.
  3. I. Banerjee, R.C. Pangule and R.S. Kane, Adv. Mater., 23, 690 (2011); https://doi.org/10.1002/adma.201001215.
  4. M.P. Schultz, J.A. Bendick, E.R. Holm and W.M. Hertel, Biofouling, 27, 87 (2011); https://doi.org/10.1080/08927014.2010.542809.
  5. A. Mostafaei and F. Nasirpouri, J. Coat. Technol. Res., 10, 679 (2013); https://doi.org/10.1007/s11998-013-9487-1.
  6. A. Jain and N.B. Bhosle, Biofouling, 25, 13 (2009); https://doi.org/10.1080/08927010802411969.
  7. L.D. Chambers, K.R. Stokes, F.C. Walsh and R.J.K. Wood, Surf. Coat. Technol., 201, 3642 (2006); https://doi.org/10.1016/j.surfcoat.2006.08.129.
  8. P. Majumdar, E. Crowley, M. Htet, S.J. Stafslien, J. Daniels, L. VanderWal and B.J. Chisholm, ACS Comb. Sci., 13, 298 (2011); https://doi.org/10.1021/co200004m.
  9. Y. Liu and Q. Zhao, Biophys. Chem., 117, 39 (2005); https://doi.org/10.1016/j.bpc.2005.04.015.
  10. C. Zhao, M. Burchardt, T. Brinkhoff, C. Beardsley, M. Simon and G. Wittstock, Langmuir, 26, 8641 (2010); https://doi.org/10.1021/la904725g.
  11. R. Hany, C. Bohlen, T. Geiger, M. Schmid and M. Zinn, Biomacromolecules, 5, 1452 (2004); https://doi.org/10.1021/bm049962e.
  12. S.J. de Mora, C. Stewart and D. Phillips, Mar. Pollut. Bull., 30, 50 (1995); https://doi.org/10.1016/0025-326X(94)00178-C.
  13. S.M. Evans, A.C. Birchenough and M.S. Brancato, Mar. Pollut. Bull., 40, 204 (2000); https://doi.org/10.1016/S0025-326X(99)00248-9.
  14. N. Bellotti, C. Deyá, B. del Amo and R. Romagnoli, Ind. Eng. Chem. Res., 49, 3386 (2010); https://doi.org/10.1021/ie9010518.
  15. I. Omae, Chem. Rev., 103, 3431 (2003); https://doi.org/10.1021/cr030669z.
  16. W. Yandi, S. Mieszkin, P. Martin-Tanchereau, M.E. Callow, J.A. Callow, L. Tyson, B. Liedberg and T. Ederth, ACS Appl. Mater. Int., 6, 11448 (2014); https://doi.org/10.1021/am502084x.
  17. W.J. Yang, D. Pranantyo, K.G. Neoh, E.T. Kang, S.L.M. Teo and D. Rittschof, Biomacromolecules, 13, 2769 (2012); https://doi.org/10.1021/bm300757e.
  18. H. Monfared and F. Sharif, Prog. Org. Coat., 63, 79 (2008); https://doi.org/10.1016/j.porgcoat.2008.04.010.
  19. C.F. Ma, L.G. Xu, W.T. Xu and G.Z. Zhang, J. Mater. Chem. B Mater. Biol. Med., 1, 3099 (2013); https://doi.org/10.1039/c3tb20454e.
  20. J.A. Mielczarski, E. Mielczarski, G. Galli, A. Morelli, E. Martinelli and E. Chiellini, Langmuir, 26, 2871 (2010); https://doi.org/10.1021/la902912h.
  21. X.M. Zhang, L. Li and Y. Zhang, Phy. Pro., 50, 328 (2013); https://doi.org/10.1016/j.phpro.2013.11.052.
  22. M. Arslan, T.N. Gevrek, J. Lyskawa, S. Szunerits, R. Boukherroub, R. Sanyal, P. Woisel and A. Sanyal, Macromolecules, 47, 5124 (2014); https://doi.org/10.1021/ma500693f.
  23. C.H. Liang and N.B. Huang, J. Mater. Eng. Perform., 18, 1086 (2009); https://doi.org/10.1007/s11665-008-9331-4.
  24. T. Ederth, T. Ekblad, M.E. Pettitt, L.S. Conlan, C.X. Du, M.E. Callow, J.A. Callow, R. Mutton, A.S. Clare, F. D’Souza, G. Donnelly, A. Bruin, P.R. Willemsen, X.J. Su, S. Wang, Q. Zhao, M. Hederos, P. Konradsson and B. Liedberg, ACS Appl. Mater. Interf., 3, 3890 (2011); https://doi.org/10.1021/am200726a.
  25. R. Wang, K.G. Neoh and E.-T. Kang, J. Colloid Interface Sci., 438, 138 (2015); https://doi.org/10.1016/j.jcis.2014.09.070.
  26. K. Liu, M. Cao, A. Fujishima and L. Jiang, Chem. Rev., 114, 10044 (2014); https://doi.org/10.1021/cr4006796.
  27. W. van Zoelen, H.G. Buss, N.C. Ellebracht, N.A. Lynd, D.A. Fischer, J. Finlay, S. Hill, M.E. Callow, J.A. Callow, E.J. Kramer, R.N. Zuckermann and R.A. Segalman, ACS Macro Lett., 3, 364 (2014); https://doi.org/10.1021/mz500090n.
  28. C.A. Amadei, R. Yang, M. Chiesa, K.K. Gleason and S. Santos, ACS Appl. Mater. Interf., 6, 4705 (2014); https://doi.org/10.1021/am405159f.
  29. J.T. Decker, C.M. Kirschner, C.J. Long, J.A. Finlay, M.E. Callow, J.A. Callow and A.B. Brennan, Langmuir, 29, 13023 (2013); https://doi.org/10.1021/la402952u.
  30. S.K. Rath, J.G. Chavan, S. Sasane, A. Srivastava, M. Patri, A.B. Samui, B.C. Chakraborty and N.S. Sawant, Prog. Org. Coat., 65, 366 (2009); https://doi.org/10.1016/j.porgcoat.2009.02.007.
  31. Y.F. Li, Y.L. Su, X.T. Zhao, R.N. Zhang, J.J. Zhao, X.C. Fan and Z.Y. Jiang, J. Membr. Sci., 455, 15 (2014); https://doi.org/10.1016/j.memsci.2013.12.060.
  32. M. Lejars, A. Margaillan and C. Bressy, Chem. Rev., 112, 4347 (2012); https://doi.org/10.1021/cr200350v.
  33. S. Bauer, M.P. Arpa-Sancet, J.A. Finlay, M.E. Callow, J.A. Callow and A. Rosenhahn, Langmuir, 29, 4039 (2013); https://doi.org/10.1021/la3038022.
  34. Y.F. Zhao, P.B. Zhang, J. Sun, C.J. Liu, Z. Yi, L.P. Zhu and Y.Y. Xu, J. Colloid Interface Sci., 448, 380 (2015); https://doi.org/10.1016/j.jcis.2015.01.084.
  35. E. Lindner, Biofouling, 6, 193 (1992); https://doi.org/10.1080/08927019209386222.
  36. E. Robbart, US Patent 29862474 (1961).
  37. D.L. Schmidt, R.F. Brady, K. Lam, D.C. Schmidt and M.K. Chaudhury, Langmuir, 20, 2830 (2004); https://doi.org/10.1021/la035385o.
  38. A. Qu, X. Wen, P. Pi, J. Cheng and Z. Yang, Polym. Int., 57, 1287 (2008); https://doi.org/10.1002/pi.2477.
  39. S.K. Rath, J.G. Chavan, S. Sasane, Jagannath, M. Patri, A.B. Samui and B.C. Chakraborty, Appl. Surf. Sci., 256, 2440 (2010); https://doi.org/10.1016/j.apsusc.2009.10.084.
  40. J. Fang, A. Kelarakis, D. Wang, E.P. Giannelis, J.A. Finlay, M.E. Callow and J.A. Callow, Polymer, 51, 2636 (2010); https://doi.org/10.1016/j.polymer.2010.04.024.
  41. J. Gehring, D. Schleheck, B. Trepka and S. Polarz, ACS Appl. Mater. Interf., 7, 1021 (2015); https://doi.org/10.1021/am5083057.
  42. M. Lejars, A. Margaillan and C. Bressy, Polym. Chem., 4, 3282 (2013); https://doi.org/10.1039/c3py00196b.
  43. S.B. Yeh, C.S. Chen, W.Y. Chen and C.J. Huang, Langmuir, 30, 11386 (2014); https://doi.org/10.1021/la502486e.
  44. Z.G. Chen, B. Chisholm, J. Kim, S. Stafslien, R. Wagner, S. Patel, J. Daniels, L.V. Wal, J. Li, K. Ward, M. Callow, S. Thompson and C. Siripirom, Polym. Int., 57, 879 (2008); https://doi.org/10.1002/pi.2422.
  45. A. Rastogi, M.Y. Paik and C.K. Ober, Appl. Mater. Int., 1, 2013 (2009); https://doi.org/10.1021/am9003733.
  46. R.A. Pullin, T.G. Nevell and J. Tsibouklis, Mater. Lett., 39, 142 (1999); https://doi.org/10.1016/S0167-577X(98)00231-6.
  47. Z. Hu, J.A. Finlay, L. Chen, D.E. Betts, M.A. Hillmyer, M.E. Callow, J.A. Callow and J.M. DeSimone, Macromolecules, 42, 6999 (2009); https://doi.org/10.1021/ma901227k.
  48. E. Martinelli, M.K. Sarvothaman, M. Alderighi, G. Galli, E. Mielczarski and J.A. Mielczarski, J. Polym. Sci. Part A: Polym. Chem., 50, 2677 (2012). https://doi.org/10.1002/pola.26050.
  49. C.J. Weinman, J.A. Finlay, D. Park, M.Y. Paik, S. Krishnan, H.S. Sundaram, M. Dimitriou, K.E. Sohn, M.E. Callow, J.A. Callow, D.L. Handlin, C.L. Willis, E.J. Kramer and C.K. Ober, Langmuir, 25, 12266 (2009); https://doi.org/10.1021/la901654q.
  50. D. Park, C.J. Weinman, J.A. Finlay, B.R. Fletcher, M.Y. Paik, H.S. Sundaram, M.D. Dimitriou, K.E. Sohn, M.E. Callow, J.A. Callow, D.L. Handlin, C.L. Willis, D.A. Fischer, E.J. Kramer and C.K. Ober, Langmuir, 26, 9772 (2010); https://doi.org/10.1021/la100032n.
  51. Z.L. Zhao, H.G. Ni, Z.Y. Han, T.F. Jiang, Y.J. Xu, X.L. Lu and P. Ye, ACS Appl. Mater. Interf., 5, 7808 (2013); https://doi.org/10.1021/am401568b.
  52. E. Martinelli, S. Agostini, G. Galli, E. Chiellini, A. Glisenti, M.E. Pettitt, M.E. Callow, J.A. Callow, K. Graf and F.W. Bartels, Langmuir, 24, 13138 (2008); https://doi.org/10.1021/la801991k.
  53. T. Burnell, J. Carpenter, K. Truby, J. Serth-Guzzo, J. Stein and D. Wiebe, ACS Symp. Ser., 729, 180 (2000); https://doi.org/10.1021/bk-2000-0729.ch011.
  54. T. Johnson, F. Renae, S.B. Choi and B. Philip, ACS Symp. Ser., 957, 43 (2007); https://doi.org/10.1021/bk-2007-0957.ch004.
  55. J. Qing, H.-T. Chandran, Y.-H. Cheng, X.-K. Liu, H.-W. Li, S.-W. Tsang, M.-F. Lo and C.-S. Lee, ACS Appl. Mater. Interf., 7, 23110 (2015); https://doi.org/10.1021/acsami.5b06819.
  56. F. Gao, G. Zhang, Q. Zhang, X. Zhan and F. Chen, Ind. Eng. Chem. Res., 54, 8789 (2015); https://doi.org/10.1021/acs.iecr.5b02864.
  57. S. Ye, A. McClelland, P. Majumdar, S.J. Stafslien, J. Daniels, B. Chisholm and Z. Chen, Langmuir, 24, 9686 (2008); https://doi.org/10.1021/la800769z.
  58. T.C. Ngo, R. Kalinova, D. Cossement, E. Hennebert, R. Mincheva, R. Snyders, P. Flammang, P. Dubois, R. Lazzaroni and P. Leclère, Langmuir, 30, 358 (2014); https://doi.org/10.1021/la403995q.
  59. S.A. Kumar, T. Balakrishnan, M. Alagar and Z. Denchev, Prog. Org. Coat., 55, 207 (2006); https://doi.org/10.1016/j.porgcoat.2005.10.001.
  60. R.B. Bodkhe, S.J. Stafslien, J. Daniels, N. Cilz, A.J. Muelhberg, S.E.M. Thompson, M.E. Callow, J.A. Callow and D.C. Webster, Prog. Org. Coat., 78, 369 (2015); https://doi.org/10.1016/j.porgcoat.2014.07.011.
  61. G. Gomathi Sankar, S. Sathya, P. Sriyutha Murthy, A. Das, R. Pandiyan, V.P. Venugopalan and M. Doble, Int. Biodeter. Biodegrad., 104, 307 (2015); https://doi.org/10.1016/j.ibiod.2015.05.022.
  62. X. Zhu, S. Guo, D. Jañczewski, F.J. Parra Velandia, S.L.-M. Teo and G.J. Vancso, Langmuir, 30, 288 (2014); https://doi.org/10.1021/la404300r.
  63. Y. Li, Y. Su, X. Zhao, R. Zhang, Y. Liu, X. Fan, J. Zhu, Y. Ma, Y. Liu and Z. Jiang, Ind. Eng. Chem. Res., 54, 8302 (2015); https://doi.org/10.1021/acs.iecr.5b01950.
  64. M.D. Dimitriou, Z.L. Zhou, H.S. Yoo, K.L. Killops, J.A. Finlay, G. Cone, H.S. Sundaram, N.A. Lynd, K.P. Barteau, L.M. Campos, D.A. Fischer, M.E. Callow, J.A. Callow, C.K. Ober, C.J. Hawker and E.J. Kramer, Langmuir, 27, 13762 (2011); https://doi.org/10.1021/la202509m.
  65. S. Krishnan, R. Ayothi, A. Hexemer, J.A. Finlay, K.E. Sohn, R. Perry, C.K. Ober, E.J. Kramer, M.E. Callow, J.A. Callow and D.A. Fischer, Langmuir, 22, 5075 (2006); https://doi.org/10.1021/la052978l.
  66. S. Krishnan, N. Wang, C.K. Ober, J.A. Finlay, M.E. Callow, J.A. Callow, A. Hexemer, K.E. Sohn, E.J. Kramer and D.A. Fischer, Biomacro-molecules, 7, 1449 (2006); https://doi.org/10.1021/bm0509826.
  67. Q. Sun, H. Li, C. Xian, Y. Yang, Y. Song and P. Cong, Appl. Surf. Sci., 344, 17 (2015); https://doi.org/10.1016/j.apsusc.2015.03.101.
  68. M. Lejars, A. Margaillan and C. Bressy, Chem. Rev., 112, 4347 (2012); https://doi.org/10.1021/cr200350v.
  69. C. Bressy and A. Margaillan, Prog. Org. Coat., 66, 400 (2009); https://doi.org/10.1016/j.porgcoat.2009.09.003.
  70. R. Yang and K.K. Gleason, Langmuir, 28, 12266 (2012); https://doi.org/10.1021/la302059s.
  71. C. Zhao, L. Li, Q. Wang, Q. Yu and J. Zheng, Langmuir, 27, 4906 (2011); https://doi.org/10.1021/la200061h.
  72. J. Peng, Y. Su, W. Chen, X. Zhao, Z. Jiang, Y. Dong, Y. Zhang, J. Liu and X. Fan, Ind. Eng. Chem. Res., 52, 13137 (2013); https://doi.org/10.1021/ie401606a.
  73. L. Wang, C. Lin, H. Gao, J. Zheng, J. Zhang, F. Xu and Y. Sui, Ind. Eng. Chem. Res., 53, 17636 (2014); https://doi.org/10.1021/ie5032343.
  74. M. Yan, H. Yang and G. Zhang, Mater. Sci. Eng. C, 51, 189 (2015); https://doi.org/10.1016/j.msec.2015.02.032.
  75. H. Urakami and Z. Guan, Biomacromolecules, 9, 592 (2008); https://doi.org/10.1021/bm701180r.
  76. F. Faÿ, I. Linossier, V. Langlois, E. Renard and K. Vallée-Réhel, Biomacromolecules, 7, 851 (2006); https://doi.org/10.1021/bm0509669.
  77. F. Faÿ, I. Linossier, V. Langlois and K. Vallée-Rehel, Biomacromolecules, 8, 1751 (2007); https://doi.org/10.1021/bm061013t.
  78. C. Ma, H. Zhou, B. Wu and G. Zhang, ACS Appl. Mater. Interf., 3, 455 (2011); https://doi.org/10.1021/am101039q.
  79. M.C. Wang, J.J. Lin, H.J. Tseng and S.H. Hsu, ACS Appl. Mater. Interf., 4, 338 (2012); https://doi.org/10.1021/am2014103.
  80. W. Xu, C. Ma, J. Ma, T. Gan and G. Zhang, ACS Appl. Mater. Interf., 6, 4017 (2014); https://doi.org/10.1021/am4054578.
  81. J. Ma, C. Ma, Y. Yang, W. Xu and G. Zhang, Ind. Eng. Chem. Res., 53, 12753 (2014); https://doi.org/10.1021/ie502147t.
  82. Y. Wang, W. Zhao, D. Liu, S. Li, X. Liu, D. Cui and X. Chen, Organo-metallics, 31, 4182 (2012); https://doi.org/10.1021/om300113p.
  83. L.D. Chambers, J.A. Wharton, R.J.K. Wood, F.C. Walsh and K.R. Stokes, Prog. Org. Coat., 77, 473 (2014); https://doi.org/10.1016/j.porgcoat.2013.11.013.
  84. J.H. Cho, K. Shanmuganathan and C.J. Ellison, ACS Appl. Mater. Interf., 5, 3794 (2013); https://doi.org/10.1021/am400455p.
  85. F. Wan, X. Pei, B. Yu, Q. Ye, F. Zhou and Q. Xue, ACS Appl. Mater. Interf., 4, 4557 (2012); https://doi.org/10.1021/am300912w.
  86. S.B. Heo, Y.S. Jeon, S. Kim, S.H. Kim and J.H. Kim, Macromol. Res., 22, 203 (2014); https://doi.org/10.1007/s13233-014-2033-x.
  87. J. Kuang and P.B. Messersmith, Langmuir, 28, 7258 (2012); https://doi.org/10.1021/la300738e.
  88. H. Jiang, L. Zhu, L. Zhu, H. Zhang, B. Zhu and Y. Xu, ACS Appl. Mater. Interf., 5, 12895 (2013); https://doi.org/10.1021/am403405c.
  89. Y. Li, Y. Su, X. Zhao, X. He, R. Zhang, J. Zhao, X. Fan and Z. Jiang, ACS Appl. Mater. Interf., 6, 5548 (2014); https://doi.org/10.1021/am405990g.
  90. C.-J. Huang, L.-C. Wang, J.-J. Shyue and Y.-C. Chang, Langmuir, 30, 12638 (2014); https://doi.org/10.1021/la503191b.
  91. M. Pérez, M. Sánchez, M. Stupak, M. García, M.T. Rojo de Almeida, J.C. Oberti, J.A. Palermo and G. Blustein, Ind. Eng. Chem. Res., 53, 7655 (2014); https://doi.org/10.1021/ie4033507.
  92. C.L. Shao, H.X. Wu, C.Y. Wang, Q.A. Liu, Y. Xu, M.Y. Wei, P.Y. Qian, Y.C. Gu, C.J. Zheng, Z.G. She and Y.C. Lin, J. Nat. Prod., 74, 629 (2011); https://doi.org/10.1021/np100641b.
  93. M. Sjogren, U. Goransson, A.L. Johnson, M. Dahlstrom, R. Andersson, J. Bergman, P.R. Jonsson and L. Bohlin, J. Nat. Prod., 67, 368 (2004); https://doi.org/10.1021/np0302403.
  94. J.W. Bartels, P.M. Imbesi, J.A. Finlay, C. Fidge, J. Ma, J.E. Seppala, A.M. Nystrom, M.E. Mackay, J.A. Callow, M.E. Callow and K.L. Wooley, ACS Appl. Mater. Interf., 3, 2118 (2011); https://doi.org/10.1021/am200337q.
  95. H. Miyagawa, K. Yamauchi, Y.K. Kim, K. Ogawa, K. Yamaguchi and Y. Suzaki, Langmuir, 28, 17761 (2012); https://doi.org/10.1021/la303316w.
  96. C. Boyer, M.R. Whittaker, M. Luzon and T.P. Davis, Macromolecules, 42, 6917 (2009); https://doi.org/10.1021/ma9013127.
  97. P.P. Karmali, Y. Chao, J.H. Park, M.J. Sailor, E. Ruoslahti, S.C. Esener and D. Simberg, Mol. Pharm., 9, 539 (2012); https://doi.org/10.1021/mp200375x.
  98. J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu and R. Peng, ACS Appl. Mater. Interf., 5, 3867 (2013); https://doi.org/10.1021/am4005495.
  99. V.R. Regina, H. Søhoel, A.R. Lokanathan, C. Bischoff, P. Kingshott, N.P. Revsbech and R.L. Meyer, ACS Appl. Mater. Interf., 4, 5915 (2012); https://doi.org/10.1021/am301554m.
  100. L. Xue, X. Lu, H. Wei, P. Long, J. Xu and Y. Zheng, J. Colloid Interface Sci., 421, 178 (2014); https://doi.org/10.1016/j.jcis.2013.12.063.
  101. A.R. Statz, R.J. Meagher, A.E. Barron and P.B. Messersmith, J. Am. Chem. Soc., 127, 7972 (2005); https://doi.org/10.1021/ja0522534.
  102. K.H.A. Lau, C. Ren, T.S. Sileika, S.H. Park, I. Szleifer and P.B. Messersmith, Langmuir, 28, 16099 (2012); https://doi.org/10.1021/la302131n.
  103. J. Peyre, V. Humblot, C. Methivier, J.M. Berjeaud and C.M. Pradier, J. Phys. Chem. B, 116, 13839 (2012); https://doi.org/10.1021/jp305597y.
  104. C.S. Gudipati, J.A. Finlay, J.A. Callow, M.E. Callow and K.L. Wooley, Langmuir, 21, 3044 (2005); https://doi.org/10.1021/la048015o.
  105. B. Dong, H. Jiang, S. Manolache, A.C.L. Wong and F.S. Denes, Langmuir, 23, 7306 (2007); https://doi.org/10.1021/la0633280.
  106. B. Mizrahi, X.J. Khoo, H.H. Chiang, K.J. Sher, R.G. Feldman, J.J. Lee, S. Irusta and D.S. Kohane, Langmuir, 29, 10087 (2013); https://doi.org/10.1021/la4014575.
  107. S.Y. Park, J.W. Chung, Y.K. Chae and S.Y. Kwak, ACS Appl. Mater. Interf., 5, 10705 (2013); https://doi.org/10.1021/am402855v.
  108. C. Xu, Y. Xu and J. Zhu, ACS Appl. Mater. Interf., 6, 16117 (2014); https://doi.org/10.1021/am5040945.
  109. M. Sun, Y. Su, C. Mu and Z. Jiang, Ind. Eng. Chem. Res., 49, 790 (2010); https://doi.org/10.1021/ie900560e.
  110. J. Ren, P. Han, H. Wei and L. Jia, ACS Appl. Mater. Interf., 6, 3829 (2014); https://doi.org/10.1021/am500292y.
  111. B. Yin, T. Liu and Y. Yin, Langmuir, 28, 17019 (2012); https://doi.org/10.1021/la303264k.
  112. T. Liu, B. Yin, T. He, N. Guo, L. Dong and Y. Yin, ACS Appl. Mater. Interf., 4, 4683 (2012); https://doi.org/10.1021/am301049v.
  113. Y.-W. Wang, A. Cao, Y. Jiang, X. Zhang, J.-H. Liu, Y. Liu and H. Wang, ACS Appl. Mater. Interf., 6, 2791 (2014); https://doi.org/10.1021/am4053317.
  114. F. Perreault, M.E. Tousley and M. Elimelech, Environ. Sci. Technol. Lett., 1, 71 (2014); https://doi.org/10.1021/ez4001356.
  115. T. Ekblad, G. Bergstrom, T. Ederth, S.L. Conlan, R. Mutton, A.S. Clare, S. Wang, Y.L. Liu, Q. Zhao, F. D’Souza, G.T. Donnelly, P.R. Willemsen, M.E. Pettitt, M.E. Callow, J.A. Callow and B. Liedberg, Biomacromolecules, 9, 2775 (2008); https://doi.org/10.1021/bm800547m.
  116. O. Iguerb, C. Poleunis, F. Mazeas, C. Compere and P. Bertrand, Langmuir, 24, 12272 (2008); https://doi.org/10.1021/la801814u.
  117. Z. Zhang, J.A. Finlay, L.F. Wang, Y. Gao, J.A. Callow, M.E. Callow and S.Y. Jiang, Langmuir, 25, 13516 (2009); https://doi.org/10.1021/la901957k.