Main Article Content

Abstract

Cadmium precursors viz. cadmium(II) acetate and acetylacetonate, less toxic than Me2Cd give in one-step synthesis procedure comparable CdSe quantum dots (QDs) which show photoluminescence over a wide frequency range from green to red region of electromagnetic spectrum. The FWHM values of sharp photoluminescence spectra of quantum dots prepared from cadmium(II) acetylacetonate and cadmium(II) acetate are 23 ± 2 nm and 14 ± 2 nm, respectively, indicating that absorption occurs in a very narrow range of wavelengths. The band gaps of CdSe quantum dots prepared using cadmium(II) acetylacetonate and cadmium(II) acetate precursors are 2.08 and 2.13 eV, respectively. Powder X-ray diffraction shows hexagonal structure of quantum dots. TEM and HRTEM images of quantum dots revealed that they are almost mono disperse and of size ≤ 4 nm. The precursor and reaction time affect size, absorption and photoluminescence properties of the quantum dots. The temporal growth was monitored by UV-visible spectroscopy (up to 20 min). The size of quantum dots increases with reaction time and photoluminescence peak shifts to higher wavelength with increasing reaction time.

Keywords

Photoluminescence CdSe quantum dots Cadmium acetylacetonate Cadmium acetate

Article Details

References

  1. K.L. Moran, W.T.A. Harrison, I. Kamber, T.E. Gier, X.H. Bu, D. Herren, P. Behrens, H. Eckert and G.D. Stucky, Chem. Mater., 8, 1930 (1996); http://dx.doi.org/10.1021/cm960168c.
  2. A.H. Fu, W.W. Gu, C. Larabell and A.P. Alivisatos, Curr. Opin. Neurobiol., 15, 568 (2005); http://dx.doi.org/10.1016/j.conb.2005.08.004.
  3. Y. Liu, L. Wang and Y. Cao, Front. Chem. China, 2, 383 (2007); http://dx.doi.org/10.1007/s11458-007-0072-x.
  4. A.P. Alivisatos, X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher and A. Kadavanich, Nature, 404, 59 (2000); http://dx.doi.org/10.1038/35003535.
  5. X.G. Peng, Adv. Mater., 15, 459 (2003); http://dx.doi.org/10.1002/adma.200390107.
  6. Y.W. Jun, Y.Y. Jung and J.J. Cheon, J. Am. Chem. Soc., 124, 615 (2002); http://dx.doi.org/10.1021/ja016887w.
  7. E.C. Scher, L. Manna and A.P. Alivisatos, Philos. Trans. R. Soc. London, Ser. A, 361, 241 (2003); http://dx.doi.org/10.1098/rsta.2002.1126.
  8. L. Manna, E.C. Scher and A.P. Alivisatos, J. Am. Chem. Soc., 122, 12700 (2000); http://dx.doi.org/10.1021/ja003055+.
  9. V.A. Fedorov, V.A. Ganshin and Y.N. Korkishko, Phy. Status. Solidi. A, 126, K5 (1991); http://dx.doi.org/10.1002/pssa.2211260133.
  10. C.B. Murray, D.J. Norris and M.G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993); http://dx.doi.org/10.1021/ja00072a025.
  11. S.D. Bunge, K.M. Krueger, T.J. Boyle, M.A. Rodriguez, T.J. Headley and V.L. Colvin, J. Mater. Chem., 13, 1705 (2003); http://dx.doi.org/10.1039/b302294c.
  12. J. Hambrock, A. Birkner and R.A. Fischer, J. Mater. Chem., 11, 3197 (2001); http://dx.doi.org/10.1039/b104231a.
  13. X.C. Jiang, B. Mayers, T. Herricks and Y.N. Xia, Adv. Mater., 15, 1740 (2003); http://dx.doi.org/10.1002/adma.200305737.
  14. N. Shukla and M.M. Nigra, Luminescence, 25, 14 (2010); http://dx.doi.org/10.1002/bio.1134.
  15. J.S. Steckel, J.P. Zimmer, S. Coe-Sullivan, N.E. Stott, V. Bulovic and M.G. Bawendi, Angew. Chem. Int. Ed., 43, 2154 (2004); http://dx.doi.org/10.1002/anie.200453728.
  16. B.O. Dabbousi, J.R. Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, J. Phy. Chem. Br., 101, 9463 (1997); http://dx.doi.org/10.1021/jp971091y.
  17. P. Reiss, J. Bleuse and A. Pron, Nano Lett., 2, 781 (2002); http://dx.doi.org/10.1021/nl025596y.
  18. D.C. Pan, Q. Wang, S.C. Jiang, X.L. Ji and L.J. An, Adv. Mater., 17, 176 (2005); http://dx.doi.org/10.1002/adma.200401425.
  19. W.X. Zhang, C. Wang, L. Zhang, X.M. Zhang, X.M. Liu, K.B. Tang and Y.T. Qian, J. Solid State Chem., 151, 241 (2000); http://dx.doi.org/10.1006/jssc.2000.8646.
  20. D. Tonti, F. van Mourik and M. Chergui, Nano Lett., 4, 2483 (2004); http://dx.doi.org/10.1021/nl0486057.
  21. X. Chen, J.L. Hutchison, P.J. Dobson and G.J. Wakefield, Mater. Sci., 44, 285 (2009); http://dx.doi.org/10.1007/s10853-008-3055-6.
  22. X.G. Peng, Chem. Eur. J., 8, 334 (2002); http://dx.doi.org/10.1002/1521-3765(20020118)8:2<334::AID-CHEM334>3.0.CO;2-T.
  23. W.W. Yu, L. Qu, W. Guo and X.G. Peng, Chem. Mater., 15, 2854 (2003); http://dx.doi.org/10.1021/cm034081k.
  24. L. Qu and X. Peng, J. Am. Chem. Soc., 124, 2049 (2002); http://dx.doi.org/10.1021/ja017002j.
  25. J.-Y. Zhang, X.-Y. Wang, M. Xiao, L. Qu and X. Peng, Appl. Phys. Lett., 81, 2076 (2002); http://dx.doi.org/10.1063/1.1507613.
  26. Z.A. Peng and X.G. Peng, J. Am. Chem. Soc., 123, 183 (2001); http://dx.doi.org/10.1021/ja003633m.
  27. O. Yamamoto, T. Sasamoto and M. Inagaki, J. Mater. Res., 13, 3394 (1998); http://dx.doi.org/10.1557/JMR.1998.0462.
  28. O. Palchik, R. Kerner, A. Gedanken, A.M. Weiss, M.A. Slifkin and V. Palchik, J. Mater. Chem., 11, 874 (2001); http://dx.doi.org/10.1039/b008088h.
  29. A.L. Washington II and G.F. Strouse, Chem. Mater., 21, 3586 (2009); http://dx.doi.org/10.1021/cm900624z.