Main Article Content

Abstract

The preparation of titanium oxide films using economically viable and mass scalable thermal evaporation technique is proposed with greater selectivity and response to toxic H2S gas sensing. Crystalline phase and surface chemistry of the film was revealed using X-ray diffraction and X-ray photoelectron spectroscopy. Film samples with different thicknesses were prepared ranging from 50 to 300 nm for sensing measurements. Amongst these, film with 200 nm thickness was found highly sensitive to H2S at 100 °C sensor operating temperature, whereas insensitive to other test gases under study. In addition, these films detect H2S concentration of as low as 1 ppm.

Keywords

Titanium dioxide H2S Thin films Gas sensors XPS

Article Details

References

  1. D.K. Aswal and S.K. Gupta, Science and Technology of Chemi-resisitive Sensors, Nova Publishers, pp. 33-93 (2007).
  2. T. Jagadale, V.Prasad, N. Ramgir, C. Prajapat, U. Patil, A. Debnath, D.K. Aswal and S.K. Gupta, RSC Adv., 5, 93081 (2015); http://dx.doi.org/10.1039/C5RA19426A.
  3. J. Kim and K. Yong, J. Phys. Chem. C, 115, 7218 (2011); http://dx.doi.org/10.1021/jp110129f.
  4. S. Das and V. Jayaraman, Prog. Mater. Sci., 66, 112 (2014); http://dx.doi.org/10.1016/j.pmatsci.2014.06.003.
  5. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone and L. Spiess, Thin Films, 418, 9 (2002); http://dx.doi.org/10.1016/S0040-6090(02)00579-5.
  6. L. Bedikyan, S. Zakhariev and M. Zakharieva, J. Chem. Technol. Metallurg., 48, 555 (2013).
  7. M. Grodzicki, R. Wasielewski, P. Mazur, S. Zuber and A. Ciszewski, Optica Applicata, 43, 99 (2013).
  8. E. Della Gaspera, M. Guglielmi, S. Agnoli, G. Granozzi, M.L. Post, V. Bello, G. Mattei and A. Martucci, Chem. Mater., 22, 3407 (2010); http://dx.doi.org/10.1021/cm100297q.
  9. H. Lin, T. Hsu, C. Tung and C. Hsu, Nanostruct. Mater., 6, 1001 (1995); http://dx.doi.org/10.1016/0965-9773(95)00231-6.
  10. G.N. Chaudhari, D.R. Bambole, A.B. Bodade and P.R. Padole, J. Mater. Sci., 41, 4860 (2006); http://dx.doi.org/10.1007/s10853-006-0042-7.
  11. G.J. Mogal, D.V. Ahire, G.E. Patil, F.I. Ezema and G.H. Jain, Chem. Sci. Trans., 4, 296 (2015); http://dx.doi.org/10.7598/cst2015.981.
  12. Z. Topalian, J.M. Smulko, G.A. Niklasson and C.G. Granqvist, J. Phys. Conf. Ser., 76, 012056/1 (2007); http://dx.doi.org/10.1088/1742-6596/76/1/012056.
  13. J. Bai and B. Zhou, Chem. Rev., 114, 10131 (2014); http://dx.doi.org/10.1021/cr400625j.
  14. M.K. Rajumon, M.S. Hegde and C.N.R. Rao, Catal. Lett., 1, 351 (1988); http://dx.doi.org/10.1007/BF00766164.
  15. Y. Kudo, N. Yoshida, M. Fujimoto, K. Tanaka and I. Toyoshima, Bull. Chem. Soc. Jpn., 59, 1481 (1986); http://dx.doi.org/10.1246/bcsj.59.1481.