Main Article Content

Abstract

This study demonstrates the enhanced thermal expansion coefficient of mica based glass-ceramic composite synthesized by mixing of alkaline boroaluminosilicate glass, K2O-MgO-SrO-B2O3-Al2O3-SiO2 and fluorophlogopite mica (KMg3AlSi3O10F2) glass-ceramic. High glass transition temperature (698 °C) and softening point (733 °C) was experienced by DSC and dilatometry for this alkaline boroaluminosilicate glass. Opaque fluorophlogopite mica glass-ceramic was obtained from SiO2-MgO-Al2O3-B2O3-K2O-F glass by controlled heat-treatment at 1000 °C based on DSC thermograph. Composites were prepared by mixing the high thermal expansion (11.26 × 10-6/K at 50-800 °C) mica glass-ceramic and alkaline boroaluminosilicate glass (having thermal expansion = 6.03 × 10-6/K at 50-700 °C) by wet mixing technique in isopropyl alcohol. XRD pattern of the glass/ glass-ceramic composites, heat-treated at 900 °C for 2 h followed by 800 °C for 10 h duration, confirms the presence of predominant fluorophlogopite mica, KMg3AlSi3O10F2 phase. Thermal expansion value significantly increased with the content of mica glass-ceramic in the glass/glass-ceramic composite mixture. It is found that the thermal expansion coefficient (50-800 °C) of composite prepared by mixing 90 boroaluminosilicate glass: 10 fluorophlogopite mica (wt. %) is 10.47 × 10-6/K and increased to 10.87 and 10.91 × 10-6/K for 80:20 and 70:30 system, respectively. Mica glass-ceramic composites with such higher thermal expansion value (> 10.5 × 10-6/K) can be applicable for SOFC sealing purpose.

Keywords

Glass Glass-ceramic Composite Thermal expansion

Article Details

References

  1. Y.S. Chou, J.W. Stevenson and L.A. Chick, J. Power Sources, 112, 130 (2002); http://dx.doi.org/10.1016/S0378-7753(02)00356-7.
  2. W. Holand, V. Rheinberger and M. Schweiger, Adv. Eng. Mater., 3, 768 (2001); http://dx.doi.org/10.1002/1527-2648(200110)3:10<768::AID-ADEM768>3.0.CO;2-T.
  3. M. Garai, N. Sasmal, A.R. Molla, S.P. Singh, A. Tarafder and B. Karmakar, J. Mater. Sci., 49, 1612 (2014); http://dx.doi.org/10.1007/s10853-013-7844-1.
  4. M. Garai and B. Karmakar, J. Alloys Comp., 678, 360 (2016); http://dx.doi.org/10.1016/j.jallcom.2016.03.296.
  5. G.P. Kothiyal, M. Goswami, B. Tiwari, K. Sharma, A. Ananthanarayanan and L. Montagne, J. Adv. Ceram., 1, 110 (2012); http://dx.doi.org/10.1007/s40145-012-0009-x.
  6. C.K. Liu, K.F. Lin and R.Y. Lee, ECS Trans., 35, 2519 (2011). http://dx.doi.org/10.1149/1.3570250.
  7. S.S. Das, P.K. Srivastava and N.B. Singh, J. Non-Cryst. Solids, 358, 2841 (2012); http://dx.doi.org/10.1016/j.jnoncrysol.2012.05.031.
  8. S. Toyoda, K. Sugamura, Y. Kuromitsu, S. Fujino, H. Takebe and K. Morinaga, Nippon Seram. Kyo. Gak., 111, 497 (2003); http://dx.doi.org/10.2109/jcersj.111.497.
  9. R.C.C. Monteiro and M.M.R.A. Lima, J. Eur. Ceram. Soc., 23, 1813 (2003); http://dx.doi.org/10.1016/S0955-2219(02)00422-3.
  10. E.M. Michie, R.W. Grimes and A.R. Boccaccini, J. Mater. Sci., 43, 4152 (2008); http://dx.doi.org/10.1007/s10853-007-2232-3.
  11. M.S. Al-Assiri and M.M. El-Desoky, J. Non-Cryst. Solids, 358, 1605 (2012); http://dx.doi.org/10.1016/j.jnoncrysol.2012.04.023.
  12. M. Ghaffari, P. Alizadeh and M.R. Rahimipour, J. Non-Cryst. Solids, 358, 3304 (2012); http://dx.doi.org/10.1016/j.jnoncrysol.2012.08.002.
  13. V.S. Puli, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, D.B. Chrisey and M.Tomozawa, J. Non-Cryst. Solids, 358, 3510 (2012); http://dx.doi.org/10.1016/j.jnoncrysol.2012.05.018.
  14. M. Garai, N. Sasmal, A.R. Molla, A. Tarafder and B. Karmakar, J. Mater. Sci. Technol., 31, 110 (2015); http://dx.doi.org/10.1016/j.jmst.2014.11.012.
  15. M. Garai, N. Sasmal, A.R. Molla and B. Karmakar, Solid State Sci., 44, 10 (2015); http://dx.doi.org/10.1016/j.solidstatesciences.2015.03.023.