Main Article Content

Abstract

Recent approaches on synthesis and characterization of graphene based materials are reviewed. Some typical materials include graphene oxide, graphene oxide modified with thiol and amino groups, nanocomposite of graphene-metal oxides and graphene quantum dots. Graphene oxide posses a wide range of impressive properties with numerous studies of dye adsorption. The modified functional graphene oxides have also been applied for removal of some toxic heavy metals in aqueous solution. Regarding thermodynamic and kinetics study, their adsorption isotherms are well-known established according to their multifunctional materials. Some ternary nanocomposite materials with or without magnetic property of specific graphene-metal/metal oxide or biopolymers have been used in both photocatalytic and sonocatalytic degradation of different industrial dye pollutants. In addition, graphene quantum dots as either chemical sensor or biosensor via turn-on/turn-off on its fluorescence were mostly applied for highly sensitive and selective detection of inorganic and organic compounds in real samples.

Keywords

Graphene oxide Graphene quantum dots Multifunctional groups Nanocomposite dye Heavy metal Photocatalytic Sonocatalytic Chemical sensor

Article Details

References

  1. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J.J. Zhu, Nanoscale, 5, 4015 (2013); http://dx.doi.org/10.1039/c3nr33849e.
  2. M.J. Allen, V.C. Tung and R.B. Kaner, Chem. Rev., 110, 132 (2010); http://dx.doi.org/10.1021/cr900070d.
  3. X. Fan, X. Chen and L. Dai, Curr. Opin. Colloid Interface Sci., 20, 429 (2015); http://dx.doi.org/10.1016/j.cocis.2015.11.005.
  4. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Solid State Commun., 146, 351 (2008); http://dx.doi.org/10.1016/j.ssc.2008.02.024.
  5. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); http://dx.doi.org/10.1021/nl0731872.
  6. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead and P.L. McEuen, Nano Lett., 8, 2458 (2008); http://dx.doi.org/10.1021/nl801457b.
  7. X. Du, I. Skachko, A. Barker and E.Y. Andrei, Nat. Nanotechnol., 3, 491 (2008); http://dx.doi.org/10.1038/nnano.2008.199.
  8. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys., 81, 109 (2009); http://dx.doi.org/10.1103/RevModPhys.81.109.
  9. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Science, 320, 1308 (2008); http://dx.doi.org/10.1126/science.1156965.
  10. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed., 48, 7752 (2009); http://dx.doi.org/10.1002/anie.200901678.
  11. C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); http://dx.doi.org/10.1126/science.1157996.
  12. D.W. Johnson, B.P. Dobson and K.S. Coleman, Curr. Opin. Colloid Interface Sci., 20, 367 (2015); http://dx.doi.org/10.1016/j.cocis.2015.11.004.
  13. S. Wang, H. Sun, H.M. Ang and M.O. Tadé, Chem. Eng. J., 226, 336 (2013); http://dx.doi.org/10.1016/j.cej.2013.04.070.
  14. K. Liu, G.X. Zhao and X.K. Wang, Chinese Sci. Bull., 57, 1223 (2012); http://dx.doi.org/10.1007/s11434-012-4986-5.
  15. G. Zhou, Z. Wang, W. Li, Q. Yao and D. Zhang, Mater. Lett., 156, 205 (2015); http://dx.doi.org/10.1016/j.matlet.2015.05.110.
  16. P. Banerjee, S. Sau, P. Das and A. Mukhopadhayay, Ecotoxicol. Environ. Saf., 119, 47 (2015); http://dx.doi.org/10.1016/j.ecoenv.2015.04.022.
  17. Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng and Y. Wu, Water Res., 67, 330 (2014); http://dx.doi.org/10.1016/j.watres.2014.09.026.
  18. F.-F. Liu, J. Zhao, S. Wang and B. Xing, Environ. Pollut., 210, 85 (2016); http://dx.doi.org/10.1016/j.envpol.2015.11.053.
  19. S.-T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu and H. Wang, J. Colloid Interface Sci., 359, 24 (2011); http://dx.doi.org/10.1016/j.jcis.2011.02.064.
  20. L. Li, X. Li, H. Duan, X. Wang and C. Luo, Dalton Trans., 43, 8431 (2014); http://dx.doi.org/10.1039/c3dt53474j.
  21. D.C. Fiallos, C.V. Gómez, G.T. Usca, D.C. Pérez, P. Tavolaro, G. Martino, L.S. Caputi and A. Tavolaro, AIP Conf. Proc., 1646, 38 (2015); http://dx.doi.org/10.1063/1.4908580.
  22. D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal and V.K. Gupta, Chem. Eng. J., 284, 687 (2016); http://dx.doi.org/10.1016/j.cej.2015.08.131.
  23. A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumard and M. Rafatullah, RSC Adv., 5, 30801 (2015); http://dx.doi.org/10.1039/C4RA16959J.
  24. L. Liu, S. Liu, Q. Zhang, C. Li, C. Bao, X. Liu and P. Xiao, J. Chem. Eng. Data, 58, 209 (2013); http://dx.doi.org/10.1021/je300551c.
  25. C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner and S. Hou, ACS Appl. Mater. Interfaces, 4, 1186 (2012); http://dx.doi.org/10.1021/am201645g.
  26. Y. Wu, H. Luo, H. Wang, C. Wang, J. Zhang and Z. Zhang, J. Colloid Interface Sci., 394, 183 (2013); http://dx.doi.org/10.1016/j.jcis.2012.11.049.
  27. T.A. Pham, N.A. Kumar and Y.T. Jeong, Synth. Met., 160, 2028 (2010); http://dx.doi.org/10.1016/j.synthmet.2010.07.034.
  28. Y.S. Feng, J.J. Ma, X.Y. Lin, J.S. Zhang, P. Lv, H.J. Xu and L.B. Luo, Chin. Chem. Lett., 23, 1411 (2012); http://dx.doi.org/10.1016/j.cclet.2012.10.009.
  29. J. Yan, G. Chen, J. Cao, W. Yang, B. Xie and M. Yang, New Carbon Mater., 27, 370 (2012); http://dx.doi.org/10.1016/S1872-5805(12)60022-5.
  30. Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen and L. Dai, J. Phys. Chem. Lett., 3, 1607 (2012); http://dx.doi.org/10.1021/jz3005877.
  31. N.M. Julkapli and S. Bagheri, Int. J. Hydrogen Energy, 40, 948 (2015); http://dx.doi.org/10.1016/j.ijhydene.2014.10.129.
  32. X. Zhang, C. Yu, C. Wang, Z. Wang and J. Qiu, Mater. Res. Bull., 67, 77 (2015); http://dx.doi.org/10.1016/j.materresbull.2015.03.002.
  33. R. Cai, J.G. Wu, L. Sun, Y.J. Liu, T. Fang, S. Zhu, S.Y. Li, Y. Wang, L.F. Guo, C. Zhao and A. Wei, Mater. Des., 90, 839 (2016); http://dx.doi.org/10.1016/j.matdes.2015.11.020.
  34. F. Yavari and N. Koratkar, J. Phys. Chem. Lett., 3, 1746 (2012); http://dx.doi.org/10.1021/jz300358t.
  35. N. Seselj, C. Engelbrekt and J. Zhang, Sci. Bull., 60, 864 (2015); http://dx.doi.org/10.1007/s11434-015-0745-8.
  36. R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nat. Mater., 14, 271 (2014); http://dx.doi.org/10.1038/nmat4170.
  37. D.A.C. Brownson, D.K. Kampouris and C.E. Banks, J. Power Sources, 196, 4873 (2011); http://dx.doi.org/10.1016/j.jpowsour.2011.02.022.
  38. L. Grande, V.T. Chundi, D. Wei, C. Bower, P. Andrew and T. Ryhänen, Particuology, 10, 1 (2012); http://dx.doi.org/10.1016/j.partic.2011.12.001.
  39. S. Sarkar and D. Basak, CrystEngComm, 15, 7606 (2013); http://dx.doi.org/10.1039/C3CE41043A.
  40. Y. Yang, E. Liu, H. Dai, L. Kang, H. Wu, J. Fan, X. Hu and H. Liu, Int. J. Hydrogen Energy, 39, 7664 (2014); http://dx.doi.org/10.1016/j.ijhydene.2013.09.109.
  41. Y.J. Cho, H. Kim, S. Lee and W. Choi, J. Catal., 330, 387 (2015); http://dx.doi.org/10.1016/j.jcat.2015.07.007.
  42. H. Li, Z. Xia, J. Chen, L. Lei and J. Xing, Appl. Catal. B, 168-169, 105 (2015); http://dx.doi.org/10.1016/j.apcatb.2014.12.029.
  43. W.-K. Jo and N.C.S. Selvam, J. Hazard. Mater., 299, 462 (2015); http://dx.doi.org/10.1016/j.jhazmat.2015.07.042.
  44. M. Sun, W. Li, S. Sun, J. He, Q. Zhang and Y. Shi, Mater. Res. Bull., 61, 280 (2015); http://dx.doi.org/10.1016/j.materresbull.2014.10.040.
  45. G.M. Neelgund, A. Oki and Z. Luo, J. Colloid Interface Sci., 430, 257 (2014); http://dx.doi.org/10.1016/j.jcis.2014.04.053.
  46. B.D. Pan, J. Zhang, Z. Li and M. Wu, Adv. Mater., 22, 734 (2010); http://dx.doi.org/10.1002/adma.200902825.
  47. H. Cheng, Y. Zhao, Y. Fan, X. Xie, L. Qu and G. Shi, ACS Nano, 6, 2237 (2012); http://dx.doi.org/10.1021/nn204289t.
  48. J. Shen, Y. Zhu, X. Yang and C. Li, Chem. Commun., 48, 3686 (2012); http://dx.doi.org/10.1039/c2cc00110a.
  49. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.-J. Zhu and P.M. Ajayan, Nano Lett., 12, 844 (2012); http://dx.doi.org/10.1021/nl2038979.
  50. H. Sun, L. Wu, W. Wei and X. Qu, Mater. Today, 16, 433 (2013); http://dx.doi.org/10.1016/j.mattod.2013.10.020.
  51. H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta and A. Okamoto, Adv. Mater., 24, 5333 (2012); http://dx.doi.org/10.1002/adma.201201930.
  52. P. Luo, Z. Ji, C. Li and G. Shi, Nanoscale., 5, 7361 (2013);. http://dx.doi.org/10.1039/C3NR02156D.
  53. J. Shen, Y. Zhu, C. Chen, X. Yang and C. Li, Chem. Commun., 47, 2580 (2011); http://dx.doi.org/10.1039/C0CC04812G.
  54. J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, New J. Chem., 36, 97 (2012); http://dx.doi.org/10.1039/C1NJ20658C.
  55. Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi and G. Chen, Anal. Chem., 84, 8378 (2012); http://dx.doi.org/10.1021/ac301945z.
  56. S. Benítez-Martínez, Á.I. López-Lorente and M. Valcárcel, Anal. Chem., 86, 12279 (2014); http://dx.doi.org/10.1021/ac5035083.
  57. L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang and L. Niu, Talanta, 101, 192 (2012); http://dx.doi.org/10.1016/j.talanta.2012.08.048.
  58. J.J. Liu, X.L. Zhang, Z.X. Cong, Z.T. Chen, H.H. Yang and G.N. Chen, Nanoscale, 5, 1810 (2013); http://dx.doi.org/10.1039/c3nr33794d.
  59. D. Wang, L. Wang, X. Dong, Z. Shi and J. Jin, Carbon, 50, 2147 (2012); http://dx.doi.org/10.1016/j.carbon.2012.01.021.
  60. Y. Zhang, C. Wu, X. Zhou, X. Wu, Y. Yang, H. Wu, S. Guo and J. Zhang, Nanoscale, 5, 1816 (2013); http://dx.doi.org/10.1039/c3nr33954h.
  61. Y.H. Li, L. Zhang, J. Huang, R.P. Liang and J.D. Qiu, Chem. Commun., 49, 5180 (2013); http://dx.doi.org/10.1039/c3cc40652k.
  62. H. Razmi and R. Mohammad-Rezaei, Biosens. Bioelectron., 41, 498 (2013); http://dx.doi.org/10.1016/j.bios.2012.09.009.
  63. X. Ran, H. Sun, F. Pu, J. Ren and X. Qu, Chem. Commun., 49, 1079 (2013); http://dx.doi.org/10.1039/c2cc38403e.
  64. L. Zhou, Y. Lin, Z. Huang, J. Ren and X. Qu, Chem. Commun., 48, 1147 (2012); http://dx.doi.org/10.1039/C2CC16791C.
  65. J. Cheng, P. Jandik and N. Avdalovic, Anal. Chim. Acta, 536, 267 (2005); http://dx.doi.org/10.1016/j.aca.2004.12.039.
  66. K. Minakata, I. Yamagishi, S. Kanno, H. Nozawa, M. Suzuki and O. Suzuki, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 878, 1683 (2010); http://dx.doi.org/10.1016/j.jchromb.2010.03.022.
  67. E. Akar, A. Altinisik and Y. Seki, Ecol. Eng., 52, 19 (2013); http://dx.doi.org/10.1016/j.ecoleng.2012.12.032.
  68. D. Podstawczyk, A. Witek-Krowiak, K. Chojnacka and Z. Sadowski, Bioresour. Technol., 160, 161 (2014); http://dx.doi.org/10.1016/j.biortech.2014.01.015.
  69. S. Arellano-Cárdenas, S. López-Cortez, M. Cornejo-Mazón and J.C. Mares-Gutiérrez, Appl. Surf. Sci., 280, 74 (2013); http://dx.doi.org/10.1016/j.apsusc.2013.04.097.
  70. S. Srivastava, R. Sinha and D. Roy, Aquat. Toxicol., 66, 319 (2004); http://dx.doi.org/10.1016/j.aquatox.2003.09.008.
  71. A.A. Fallah and A. Barani, Food Contr., 40, 100 (2014); http://dx.doi.org/10.1016/j.foodcont.2013.11.045.
  72. E. Sudova, J. Machova, Z. Svobodova and T. Vesely, Vet. Med. (Praha), 52, 527 (2007).
  73. P. Kalpana and P. King, Asian J. Chem., 26, 75 (2014); http://dx.doi.org/10.14233/ajchem.2014.15322.
  74. H. Yan, X. Tao, Z. Yang, K. Li, H. Yang, A. Li and R. Cheng, J. Hazard. Mater., 268, 191 (2014); http://dx.doi.org/10.1016/j.jhazmat.2014.01.015.
  75. S. Debnath, A. Maity and K. Pillay, J. Environ. Chem. Eng., 2, 260 (2014); http://dx.doi.org/10.1016/j.jece.2013.12.018.
  76. L. Sun and B. Fugetsu, Chem. Eng. J., 240, 565 (2014); http://dx.doi.org/10.1016/j.cej.2013.10.083.
  77. Z. Yang, S. Ji, W. Gao, C. Zhang, L. Ren, W.W. Tjiu, Z. Zhang, J. Pan and T. Liu, J. Colloid Interface Sci., 408, 25 (2013); http://dx.doi.org/10.1016/j.jcis.2013.07.011.
  78. G.K. Ramesha, A. Vijaya Kumara, H.B. Muralidhara and S. Sampath, J. Colloid Interface Sci., 361, 270 (2011); http://dx.doi.org/10.1016/j.jcis.2011.05.050.
  79. J. Wang and B. Chen, Chem. Eng. J., 281, 379 (2015); http://dx.doi.org/10.1016/j.cej.2015.06.102.
  80. X. Xue, J. Xu, S.A. Baig and X. Xu, J. Taiwan Inst. Chem. Eng., 59, 365 (2016); http://dx.doi.org/10.1016/j.jtice.2015.08.019.
  81. Z. Ding, X. Hu, V. Morales and B. Gao, Chem. Eng. J., 257, 248 (2014); http://dx.doi.org/10.1016/j.cej.2014.07.034.
  82. X.J. Hu, Y.G. Liu, H. Wang, A.W. Chen, G.M. Zeng, S.M. Liu, Y.M. Guo, X. Hu, T.T. Li, Y.Q. Wang, L. Zhou and S.H. Liu, Sep. Purif. Technol., 108, 189 (2013); http://dx.doi.org/10.1016/j.seppur.2013.02.011.
  83. R. Mukherjee, P. Bhunia and S. De, Chem. Eng. J., 292, 284 (2016); http://dx.doi.org/10.1016/j.cej.2016.02.015.
  84. J.H. Chen, H.T. Xing, X. Sun, Z.B. Su, Y. Huang, W. Weng, S.R. Hu, H.X. Guo, W.B. Wu and Y.S. He, Appl. Surf. Sci., 356, 355 (2015); http://dx.doi.org/10.1016/j.apsusc.2015.08.076.
  85. L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei and B. Du, Chem. Eng. J., 281, 1 (2015); http://dx.doi.org/10.1016/j.cej.2015.06.043.
  86. Y. Liu, L. Chen, Y. Li, P. Wang and Y. Dong, J. Environ. Chem. Eng., 4, 825 (2016); http://dx.doi.org/10.1016/j.jece.2015.12.023.
  87. A.S.K. Kumar and S.J. Jiang, J. Environ. Chem. Eng., 4, 1698 (2016); http://dx.doi.org/10.1016/j.jece.2016.02.035.
  88. F. Najafi, O. Moradi, M. Rajabi, M. Asif, I. Tyagi, S. Agarwal and V.K. Gupta, J. Mol. Liq., 208, 106 (2015); http://dx.doi.org/10.1016/j.molliq.2015.04.033.
  89. X. Li, H. Zhou, W. Wu, S. Wei, Y. Xu and Y. Kuang, J. Colloid Interface Sci., 448, 389 (2015); http://dx.doi.org/10.1016/j.jcis.2015.02.039.
  90. A. Banazadeh, S. Mozaffari and B. Osoli, J. Environ. Chem. Eng., 3, 2801 (2015); http://dx.doi.org/10.1016/j.jece.2015.10.003.
  91. X. Liu, J. Li, X. Wang, C. Chen and X. Wang, J. Nucl. Mater., 466, 56 (2015); http://dx.doi.org/10.1016/j.jnucmat.2015.07.027.
  92. M. Yari, M. Rajabi, O. Moradi, A. Yari, M. Asif, S. Agarwal and V.K. Gupta, J. Mol. Liq., 209, 50 (2015); http://dx.doi.org/10.1016/j.molliq.2015.05.022.
  93. A. Fujishima and K. Honda, Nature, 238, 37 (1972); http://dx.doi.org/10.1038/238037a0.
  94. M.R. Homann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); http://dx.doi.org/10.1021/cr00033a004.
  95. A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2009); http://dx.doi.org/10.1039/B800489G.
  96. X.B. Chen, S.H. Shen, L.J. Guo and S.S. Mao, Chem. Rev., 110, 6503 (2010); http://dx.doi.org/10.1021/cr1001645.
  97. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang and L.Z. Zhang, Chem. Mater., 14, 3808 (2002); http://dx.doi.org/10.1021/cm020027c.
  98. Y.W. Cheng, R.C.Y. Chan and P.K. Wong, Water Res., 41, 842 (2007); http://dx.doi.org/10.1016/j.watres.2006.11.033.
  99. P. Panagiotopoulou, A. Christodoulakis, D.I. Kondarides and S. Boghosian, J. Catal., 240, 114 (2006); http://dx.doi.org/10.1016/j.jcat.2006.03.012.
  100. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng and G.Q. Lu, Nature, 453, 638 (2008); http://dx.doi.org/10.1038/nature06964.
  101. S.I. In, Y.D. Hou, B.L. Abrams, P.C.K. Vesborg and I. Chorkendor, J. Electrochem. Soc., 157, E69 (2010); http://dx.doi.org/10.1149/1.3308599.
  102. S.W. Liu, J.G. Yu and M. Jaroniec, J. Am. Chem. Soc., 132, 11914 (2010); http://dx.doi.org/10.1021/ja105283s.
  103. Q. Xiang, J. Yu and M. Jaroniec, Chem. Commun., 47, 4532 (2011); http://dx.doi.org/10.1039/c1cc10501a.
  104. M. Ksibi, S. Rossignol, J.M. Tatibouet and C. Trapalis, Mater. Lett., 62, 4204 (2008); http://dx.doi.org/10.1016/j.matlet.2008.06.026.
  105. J.H. Park, S. Kim and A.J. Bard, Nano Lett., 6, 24 (2006); http://dx.doi.org/10.1021/nl051807y.
  106. Q.J. Xiang, J.G. Yu and M. Jaroniec, Phys. Chem. Chem. Phys., 13, 4853 (2011); http://dx.doi.org/10.1039/C0CP01459A.
  107. Y.B. Liu, B.X. Zhou, J.H. Li, X.J. Gan, J. Bai and W.M. Cai, Appl. Catal. B, 92, 326 (2009); http://dx.doi.org/10.1016/j.apcatb.2009.08.011.
  108. J.G. Yu, J.F. Xiong, B. Cheng and S.W. Liu, Appl. Catal. B, 60, 211 (2005); http://dx.doi.org/10.1016/j.apcatb.2005.03.009.
  109. J.G. Yu, L.F. Qi and M. Jaroniec, J. Phys. Chem. C, 114, 13118 (2010); http://dx.doi.org/10.1021/jp104488b.
  110. Q.J. Xiang, J.G. Yu, B. Cheng and H.C. Ong, Chem. Asian J. , 5, 1466 (2010).
  111. K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009); http://dx.doi.org/10.1002/adma.200802738.
  112. J.G. Yu, J. Zhang and M. Jaroniec, Green Chem., 12, 1611 (2010); http://dx.doi.org/10.1039/c0gc00236d.
  113. Y.H. Ng, A. Iwase, A. Kudo and R. Amal, J. Phys. Chem. Lett., 1, 2607 (2010); http://dx.doi.org/10.1021/jz100978u.
  114. Y.H. Ng, A. Iwase, N.J. Bell, A. Kudo and R. Amal, Catal. Today, 164, 353 (2011); http://dx.doi.org/10.1016/j.cattod.2010.10.090.
  115. H.T. Hu, X.B. Wang, F.M. Liu, J.C. Wang and C.H. Xu, Synth. Met., 161, 404 (2011); http://dx.doi.org/10.1016/j.synthmet.2010.12.018.
  116. T.N. Lambert, C.A. Chavez, N.S. Bell, C.M. Washburn, D.R. Wheeler and M.T. Brumbach, Nanoscale, 3, 188 (2011); http://dx.doi.org/10.1039/C0NR00638F.
  117. Y.P. Zhang and C.X. Pan, J. Mater. Sci., 46, 2622 (2011); http://dx.doi.org/10.1007/s10853-010-5116-x.
  118. B.J. Li and H.Q. Cao, J. Mater. Chem., 21, 3346 (2011); http://dx.doi.org/10.1039/C0JM03253K.
  119. Z.Q. Lia, H.L. Wang, L.Y. Zi, J.J. Zhang and Y.S. Zhang, Ceram. Int., 4, 10634 (2015).
  120. M. Sun, Y. Fang, Y. Wang, S. Sun, J. He and Z. Yan, J. Alloys Comp., 650, 520 (2015); http://dx.doi.org/10.1016/j.jallcom.2015.08.002.
  121. L. Li, X. Zhang, W. Zhang, L. Wang, X. Chen and Y. Gao, Colloids Surf. A Physicochem. Eng. Asp., 457, 134 (2014); http://dx.doi.org/10.1016/j.colsurfa.2014.05.060.
  122. J. Qin, R. Li, C. Lu, Y. Jiang, H. Tang and X. Yang, Ceram. Int., 41, 4231 (2015); http://dx.doi.org/10.1016/j.ceramint.2014.11.046.
  123. Y. Yang, Z. Ma, L. Xu, H. Wang and N. Fu, Appl. Surf. Sci., 369, 576 (2016); http://dx.doi.org/10.1016/j.apsusc.2016.02.078.
  124. M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou and J. Qian, J. Colloid Interface Sci., 467, 129 (2016); http://dx.doi.org/10.1016/j.jcis.2016.01.005.
  125. H. Xie, X. Ye, K. Duan, M. Xue, Y. Du, W. Ye and C. Wang, J. Alloys Comp., 636, 40 (2015); http://dx.doi.org/10.1016/j.jallcom.2015.02.159.
  126. N. Raghavan, S. Thangavel and G. Venugopal, Mater. Sci. Semicond. Process., 30, 321 (2015); http://dx.doi.org/10.1016/j.mssp.2014.09.019.
  127. Z. Jin, W. Duan, B. Liu, X. Chen, F. Yang and J. Guo, Appl. Surf. Sci., 356, 707 (2015); http://dx.doi.org/10.1016/j.apsusc.2015.08.122.
  128. W. Zhao, Z. Zhang, J. Zhang, H. Wu, L. Xi and C. Ruan, Mater. Lett., 171, 182 (2016); http://dx.doi.org/10.1016/j.matlet.2016.02.063.
  129. M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed and A. Elhissi, J. Alloys Comp., 577, 717 (2013); http://dx.doi.org/10.1016/j.jallcom.2013.06.137.
  130. J. Miao, A. Xie, S. Li, F. Huang, J. Cao and Y. Shen, Appl. Surf. Sci., 360, 594 (2016); http://dx.doi.org/10.1016/j.apsusc.2015.11.005.
  131. N. Wang, Y. Zhou, C. Chen, L. Cheng and H. Ding, Catal. Commun., 73, 74 (2016); http://dx.doi.org/10.1016/j.catcom.2015.10.015.
  132. Q. Liu, Y. Guo, Z. Chen, Z. Zhang and X. Fang, Appl. Catal. B, 183, 231 (2016); http://dx.doi.org/10.1016/j.apcatb.2015.10.054.
  133. H. Yang, X. Liu, S. Sun, Y. Nie, H. Wu, T. Yang, S. Zheng and S. Lin, Mater. Res. Bull., 78, 112 (2016); http://dx.doi.org/10.1016/j.materresbull.2016.02.038.
  134. M. Zhu, P. Chen and M. Liu, Langmuir, 28, 3385 (2012); http://dx.doi.org/10.1021/1a204452p.
  135. J. Shen, G. Ma, J. Zhang, W. Quan and L. Li, Appl. Surf. Sci., 359, 455 (2015); http://dx.doi.org/10.1016/j.apsusc.2015.10.101.
  136. N. Ma, Y. Qiu, Y. Zhang, H. Liu, Y. Yang, J. Wang, X. Li and C. Cui, J. Alloys Comp., 648, 818 (2015); http://dx.doi.org/10.1016/j.jallcom.2015.07.070.
  137. S. Dutta, R. Sahoo, C. Ray, S. Sarkar, J. Jana, Y. Negishi and T. Pal, Dalton Trans., 44, 193 (2015); http://dx.doi.org/10.1039/C4DT02749C.
  138. D.A. Reddy, R. Ma and T.K. Kim, Ceram. Int., 41, 6999 (2015); http://dx.doi.org/10.1016/j.ceramint.2015.01.155.
  139. H. Wang, D. Peng, T. Chen, Y. Chang and S. Dong, Ceram. Int., 42, 4406 (2016); http://dx.doi.org/10.1016/j.ceramint.2015.11.124.
  140. W. Han, C. Zang, Z. Huang, H. Zhang, L. Ren, X. Qi and J. Zhong, Int. J. Hydrogen Energy, 39, 19502 (2014); http://dx.doi.org/10.1016/j.ijhydene.2014.09.043.
  141. J. Bi, W. Fang, L. Li, X. Li, M. Liu, S. Liang, Z. Zhang, Y. He, H. Lin, L. Wu, S. Liu and P.K. Wong, J. Alloys Comp., 649, 28 (2015); http://dx.doi.org/10.1016/j.jallcom.2015.07.083.
  142. M. Ghavami, R. Mohammadi, M. Koohi and M.Z. Kassaee, Mater. Sci. Semicond. Process., 26, 69 (2014); http://dx.doi.org/10.1016/j.mssp.2014.04.007.
  143. M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z.L. Hong and N.R. Khalid, Ceram. Int., 40, 10085 (2014); http://dx.doi.org/10.1016/j.ceramint.2014.03.184.
  144. C. Wang, M. Cao, P. Wang, Y. Ao, J. Hou and J. Qian, Appl. Catal. A, 473, 83 (2014); http://dx.doi.org/10.1016/j.apcata.2013.12.028.
  145. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov and A.K. Geim, Science, 320, 356 (2008); http://dx.doi.org/10.1126/science.1154663.
  146. S.N. Baker and G.A. Baker, Angew. Chem., 49, 6726 (2010); http://dx.doi.org/10.1002/anie.200906623.
  147. S. Zhu, S. Tang, J. Zhang and B. Yang, Chem. Commun., 48, 4527 (2012); http://dx.doi.org/10.1039/c2cc31201h.
  148. M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen and V.G. Gomes, Nanoscale, 6, 11988 (2014); http://dx.doi.org/10.1039/C4NR02365J.
  149. S.P. Jovanovic, Z. Syrgiannis, Z.M. Markovic, A. Bonasera, D.P. Kepic, M.D. Budimir, D.D. Milivojevic, V.D. Spasojevic, M.D. Dramicanin, V.B. Pavlovic and B.M. Todorovic Markovic, ACS Appl. Mater. Interface, 7, 25865 (2015); http://dx.doi.org/10.1021/acsami.5b08226.
  150. S.J. Zhu, J.H. Zhang, S.J. Tang, C.Y. Qiao, L. Wang, H.Y. Wang, X. Liu, B. Li, Y.F. Li, W.L. Yu, X.F. Wang, H.C. Sun and B. Yang, Adv. Funct. Mater., 22, 4732 (2012); http://dx.doi.org/10.1002/adfm.201201499.
  151. Z. Fan, S. Li, F. Yuan and L. Fan, RSC Adv., 5, 19773 (2015); http://dx.doi.org/10.1039/C4RA17131D.
  152. Z. Wu, W. Li, J. Chen and C. Yu, Talanta, 119, 538 (2013); http://dx.doi.org/10.1016/j.talanta.2013.11.065.
  153. C. Zhou, W. Jiang and B.K. Via, Colloids Surf. B: Biointerfaces, 118, 72 (2014); http://dx.doi.org/10.1016/j.colsurfb.2014.03.038.
  154. F. Wang, Z. Gu, W. Lei, W. Wang, X. Xia and Q. Hao, Sens. Actuators B Chem., 190, 516 (2014); http://dx.doi.org/10.1016/jsnb.2013.09.009.
  155. M. Hosseini, H. Khabbaz, A.S. Dezfoli, M.R. Ganjali and M. Dadmehr, Spectrochim. Acta A, 136 (Part C), 1962 (2015); http://dx.doi.org/10.1016/j.saa.2014.10.117.
  156. S. Benítez-Martínez and M. Valcárcel, Sens. Actuators B Chem., 197, 350 (2014); http://dx.doi.org/10.1016/j.snb.2014.03.008.
  157. Z. Liu, Y. Gong and Z. Fan, J. Lumin., 175, 129 (2016); http://dx.doi.org/10.1016/j.jlumin.2016.01.036.
  158. W. Zhang and J. Gan, Appl. Surf. Sci., 372, 145 (2016); http://dx.doi.org/10.1016/j.apsusc.2016.02.248.
  159. C. Zhang, Y. Cui, L. Song, X. Liu and Z. Hu, Talanta, 150, 54 (2016).
  160. T. Hu, X. Chu, F. Gao, Y. Dong, W. Sun and L. Bai, J. Solid State Chem., 237, 284 (2016); http://dx.doi.org/10.1016/j.jssc.2016.02.037.
  161. L. Xu, W. Mao, J. Huang, S. Li, K. Huang, M. Li, J. Xia and Q. Chen, Sens. Actuators B Chem., 230, 54 (2016); http://dx.doi.org/10.1016/j.snb.2015.12.043.
  162. J. Ju, R. Zhang and W. Chen, Sens. Actuators B Chem., 228, 66 (2016); http://dx.doi.org/10.1016/j.snb.2016.01.007.
  163. Z. Liu, J. Xiao, X. Wu, L. Lin, S. Weng, M. Chen, X. Cai and X. Lin, Sens. Actuators B Chem., 229, 217 (2016); http://dx.doi.org/10.1016/j.snb.2016.01.127.
  164. S. Chen, Y. Song, F. Shi, Y. Liu, Q. Ma, Sens. Actuators B Chem., 231, 634 (2016); http://dx.doi.org/10.1016/j.snb.2016.03.071.
  165. J. Zhao, L. Zhao, C. Lan and S. Zhao, Sens. Actuators B Chem., 223, 246 (2016); http://dx.doi.org/10.1016/j.snb.2015.09.105.
  166. M. Amjadi, R. Shokri and T. Hallaj, Spectrochim. Acta A, 153, 619 (2016); http://dx.doi.org/10.1016/j.saa.2015.09.037.
  167. O. Adegoke and P.B.C. Forbes, Talanta, 146, 780 (2016); http://dx.doi.org/10.1016/j.talanta.2015.06.023.
  168. S. Weng, D. Liang, H. Qiu, Z. Liu, Z. Lin, Z. Zheng, A. Liu, W. Chen and X. Lin, Sens. Actuators B Chem., 221, 7 (2015); http://dx.doi.org/10.1016/j.snb.2015.06.093.
  169. J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari and A. Salehi, Sens. Actuators B Chem., 229, 239 (2016); http://dx.doi.org/10.1016/j.snb.2016.01.086.
  170. B. Wang, S. Zhuo, L. Chen and Y. Zhang, Spectrochim. Acta A, 131, 384 (2014); http://dx.doi.org/10.1016/j.saa.2014.04.129.
  171. X. Liu, W. Gao, X. Zhou and Y. Ma, J. Mater. Res., 29, 1401 (2014); http://dx.doi.org/10.1557/jmr.2014.145.
  172. F. Cai, X. Liu, S. Liu, H. Liu and Y. Huang, R. Soc. Chem. Adv., 4, 52016 (2014); http://dx.doi.org/10.1039/C4RA09320H.