Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Study on Decomposition of Environmentally Noxious Gas with Simultaneous Synthesis of Metal Oxide Powder in Transferred DC Thermal Plasma
Corresponding Author(s) : Heon Chang Kim
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
Carbon dioxide was directly decomposed by a transferred DC thermal plasma and the effects of plasma induced current on the decomposition efficiency were investigated. The thermal plasma system was operated in a way that the metal oxide particles could be simultaneously produced from an anodic bulk metal (Zn) placed on a carbon crucible, so as to continuously consume atomic and molecular oxygens (O and O2) generated from the CO2 decomposition. As the induced current increased from 120 to 160 A by 20 A, the decomposition efficiency increased almost linearly from 53 to 68 %. The amount of ZnO particles produced from the bulk also increased and the particle crystallinity was improved. Although the concentration of carbon monoxide in the effluent was sharply increased at 160 A, further destruction can be done by re-circulating the effluent to plasma chamber.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Mikkelsen, M. Jørgensen and F.C. Krebs, Energy Environ. Sci., 3, 43 (2010); https://doi.org/10.1039/B912904A.
- Y. Shen, W. Duan and M. Shi, J. Org. Chem., 68, 1559 (2003); https://doi.org/10.1021/jo020191j.
- S. Lee and S. Park, J. Ind. Eng. Chem., 23, 1 (2015); https://doi.org/10.1016/j.jiec.2014.09.001.
- E.E. Ünveren, B.Ö. Monkul, S. Sarioglan, N. Karademir and E. Alper, Petroleum, 3, 37 (2017); https://doi.org/10.1016/j.petlm.2016.11.001.
- C. Chen and S. Bhattacharjee, Appl. Surf. Sci., 396, 1515 (2017); https://doi.org/10.1016/j.apsusc.2016.11.200.
- H. Yang, Z. Xu, M. Fan, R. Gupta, R. Slimane, A. Bland and I. Wright, J. Environ. Sci. (China), 20, 14 (2008); https://doi.org/10.1016/S1001-0742(08)60002-9.
- A.A. Olajire, Energy, 35, 2610 (2010); https://doi.org/10.1016/j.energy.2010.02.030.
- C.A. Crouse, E. Shin, P.T. Murray and J.E. Spowart, Mater. Lett., 64, 271 (2010); https://doi.org/10.1016/j.matlet.2009.10.060.
- L.H. Bac, Y.S. Kwon, J.S. Kim, Y.I. Lee, D.W. Lee and J.C. Kim, Mater. Res. Bull., 45, 352 (2010); https://doi.org/10.1016/j.materresbull.2009.12.008.
- S.K. Park, K.W. Park and H.C. Kim, Asian J. Chem., 24, 4141 (2012).
References
M. Mikkelsen, M. Jørgensen and F.C. Krebs, Energy Environ. Sci., 3, 43 (2010); https://doi.org/10.1039/B912904A.
Y. Shen, W. Duan and M. Shi, J. Org. Chem., 68, 1559 (2003); https://doi.org/10.1021/jo020191j.
S. Lee and S. Park, J. Ind. Eng. Chem., 23, 1 (2015); https://doi.org/10.1016/j.jiec.2014.09.001.
E.E. Ünveren, B.Ö. Monkul, S. Sarioglan, N. Karademir and E. Alper, Petroleum, 3, 37 (2017); https://doi.org/10.1016/j.petlm.2016.11.001.
C. Chen and S. Bhattacharjee, Appl. Surf. Sci., 396, 1515 (2017); https://doi.org/10.1016/j.apsusc.2016.11.200.
H. Yang, Z. Xu, M. Fan, R. Gupta, R. Slimane, A. Bland and I. Wright, J. Environ. Sci. (China), 20, 14 (2008); https://doi.org/10.1016/S1001-0742(08)60002-9.
A.A. Olajire, Energy, 35, 2610 (2010); https://doi.org/10.1016/j.energy.2010.02.030.
C.A. Crouse, E. Shin, P.T. Murray and J.E. Spowart, Mater. Lett., 64, 271 (2010); https://doi.org/10.1016/j.matlet.2009.10.060.
L.H. Bac, Y.S. Kwon, J.S. Kim, Y.I. Lee, D.W. Lee and J.C. Kim, Mater. Res. Bull., 45, 352 (2010); https://doi.org/10.1016/j.materresbull.2009.12.008.
S.K. Park, K.W. Park and H.C. Kim, Asian J. Chem., 24, 4141 (2012).