Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Synthesis and Antimicrobial Activity of 1-(2-Chloropyridin-3-yl)-3-substituted Urea Derivatives
Corresponding Author(s) : Vijay Kumar Pujari
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
A green one pot synthetic protocol method for 1-(2-chloropyridin-3-yl)-3-substituted urea derivatives from 2-chloropyridin-3-amine and tert-butyl substituted carbamates by using bis(trimethylaluminum)-1,4-diazabicyclo[2,2,2]octane (DABAL-Me3) under microwave irradiation is developed. The compound structures established by spectral data such as IR, 1H NMR and mass spectroscopy. All the synthesized compounds were tested in vitro antimicrobial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Yu, L.D. Tang, Y.L. Li, S.H. Song, X.L. Ji, M.S. Lin and C.F. Wu, Bioorg. Med. Chem. Lett., 22, 110 (2012); https://doi.org/10.1016/j.bmcl.2011.11.061.
- S. Madapa, Z. Tusi, A. Mishra, K. Srivastava, S.K. Pandey, R. Tripathi, S.K. Puri and S. Batra, Bioorg. Med. Chem., 17, 222 (2009); https://doi.org/10.1016/j.bmc.2008.11.005.
- S.K. Anandan and R.D. Gless, Bioorg. Med. Chem. Lett., 20, 2740 (2010); https://doi.org/10.1016/j.bmcl.2010.03.074.
- N. Sakakibara, M. Baba, M. Okamoto, M. Toyama, Y. Demizu, T. Misawa, M. Kurihara, K. Irie, Y. Kato and T. Maruyama, Antivir. Chem. Chemother., 24, 3 (2015); https://doi.org/10.1177/2040206614566584.
- F. Pacchiano, F. Carta, D. Vullo, A. Scozzafava and C.T. Supuran, Bioorg. Med. Chem. Lett., 21, 102 (2011); https://doi.org/10.1016/j.bmcl.2010.11.064.
- L. Doub, L. Richardson, D. Herbst, M. Black, O. Stevenson, L. Bambas, G. Youmans and A. Youmans, J. Am. Chem. Soc., 80, 2205 (1958); https://doi.org/10.1021/ja01542a043.
- A.P. Keche, G.D. Hatnapure, R.H. Tale, A.H. Rodge, S.S. Birajdar and V.M. Kamble, Bioorg. Med. Chem. Lett., 22, 3445 (2012); https://doi.org/10.1016/j.bmcl.2012.03.092.
- R.H. Tale, A.H. Rodge, G.D. Hatnapure and A.P. Keche, Bioorg. Med. Chem. Lett., 21, 4648 (2011); https://doi.org/10.1016/j.bmcl.2011.03.062.
- Q.Z. Zheng, K. Cheng, X.M. Zhang, K. Liu, Q.C. Jiao and H.L. Zhu, Eur. J. Med. Chem., 45, 3207 (2010); https://doi.org/10.1016/j.ejmech.2010.03.027.
- I. Gallou, Org. Prep. Proced. Int., 39, 355 (2007); https://doi.org/10.1080/00304940709458592.
- S.H. Kim and S.H. Hong, Org. Lett., 18, 212 (2016); https://doi.org/10.1021/acs.orglett.5b03328.
- D. Matei, M.W. Sill, H.A. Lankes, K. DeGeest, R.E. Bristow, D. Mutch, S.D. Yamada, D. Cohn, V. Calvert, J. Farley, E.F. Petricoin and M.J. Birrer, J. Clin. Oncol., 29, 69 (2011); https://doi.org/10.1200/JCO.2009.26.7856.
- D.J. Crona, M.D. Keisler and C.M. Walko, Ann. Pharmacother., 47, 1685 (2013); https://doi.org/10.1177/1060028013509792.
- L. Lorusso, L. Pieruzzi, A. Biagini, E. Sabini, L. Valerio, C. Giani, P. Passannanti, B. Pontillo-Contillo, V. Battaglia, S. Mazzeo, E. Molinaro and R. Elisei, Onco Targets Ther., 9, 6467 (2016); https://doi.org/10.2147/OTT.S84625.
- H.H. Wong and T. Eisen, Expert Rev. Anticancer Ther., 13, 649 (2013); https://doi.org/10.1586/era.13.40.
- M. Marlow, M. Al-Ameedee, T. Smith, S. Wheeler and M.J. Stocks, Chem. Commun., 51, 6384 (2015); https://doi.org/10.1039/C5CC00454C.
- C. Spyropoulos and C.G. Kokotos, J. Org. Chem., 79, 4477 (2014); https://doi.org/10.1021/jo500492x.
- F. Bigi, R. Maggi and G. Sartori, Green Chem., 2, 140 (2000); https://doi.org/10.1039/b002127j.
- E.V. Vinogradova, B.P. Fors and S.L. Buchwald, J. Am. Chem. Soc., 134, 11132 (2012); https://doi.org/10.1021/ja305212v.
- S.H. Lee, H. Matsushita, B. Clapham and K.D. Janda, Tetrahedron, 60, 3439 (2004); https://doi.org/10.1016/j.tet.2004.02.034.
- S. Woodward and S. Dagorne, eds.: K. Kolb and P.V. Zezschwitz, Modern Organoaluminum Reagents; Springer-Verlag Berlin Heidelberg, p. 245 (2013).
- D. Ashok, A. Ganesh, B. Vijaya Lakshmi and S. Ravi, Russ. J. Gen. Chem., 84, 1237 (2014); https://doi.org/10.1134/S1070363214060309.
- A. Lew, P.O. Krutzik, M.E. Hart and A.R. Chamberlin, J. Comb. Chem., 4, 95 (2002); https://doi.org/10.1021/cc010048o.
References
B. Yu, L.D. Tang, Y.L. Li, S.H. Song, X.L. Ji, M.S. Lin and C.F. Wu, Bioorg. Med. Chem. Lett., 22, 110 (2012); https://doi.org/10.1016/j.bmcl.2011.11.061.
S. Madapa, Z. Tusi, A. Mishra, K. Srivastava, S.K. Pandey, R. Tripathi, S.K. Puri and S. Batra, Bioorg. Med. Chem., 17, 222 (2009); https://doi.org/10.1016/j.bmc.2008.11.005.
S.K. Anandan and R.D. Gless, Bioorg. Med. Chem. Lett., 20, 2740 (2010); https://doi.org/10.1016/j.bmcl.2010.03.074.
N. Sakakibara, M. Baba, M. Okamoto, M. Toyama, Y. Demizu, T. Misawa, M. Kurihara, K. Irie, Y. Kato and T. Maruyama, Antivir. Chem. Chemother., 24, 3 (2015); https://doi.org/10.1177/2040206614566584.
F. Pacchiano, F. Carta, D. Vullo, A. Scozzafava and C.T. Supuran, Bioorg. Med. Chem. Lett., 21, 102 (2011); https://doi.org/10.1016/j.bmcl.2010.11.064.
L. Doub, L. Richardson, D. Herbst, M. Black, O. Stevenson, L. Bambas, G. Youmans and A. Youmans, J. Am. Chem. Soc., 80, 2205 (1958); https://doi.org/10.1021/ja01542a043.
A.P. Keche, G.D. Hatnapure, R.H. Tale, A.H. Rodge, S.S. Birajdar and V.M. Kamble, Bioorg. Med. Chem. Lett., 22, 3445 (2012); https://doi.org/10.1016/j.bmcl.2012.03.092.
R.H. Tale, A.H. Rodge, G.D. Hatnapure and A.P. Keche, Bioorg. Med. Chem. Lett., 21, 4648 (2011); https://doi.org/10.1016/j.bmcl.2011.03.062.
Q.Z. Zheng, K. Cheng, X.M. Zhang, K. Liu, Q.C. Jiao and H.L. Zhu, Eur. J. Med. Chem., 45, 3207 (2010); https://doi.org/10.1016/j.ejmech.2010.03.027.
I. Gallou, Org. Prep. Proced. Int., 39, 355 (2007); https://doi.org/10.1080/00304940709458592.
S.H. Kim and S.H. Hong, Org. Lett., 18, 212 (2016); https://doi.org/10.1021/acs.orglett.5b03328.
D. Matei, M.W. Sill, H.A. Lankes, K. DeGeest, R.E. Bristow, D. Mutch, S.D. Yamada, D. Cohn, V. Calvert, J. Farley, E.F. Petricoin and M.J. Birrer, J. Clin. Oncol., 29, 69 (2011); https://doi.org/10.1200/JCO.2009.26.7856.
D.J. Crona, M.D. Keisler and C.M. Walko, Ann. Pharmacother., 47, 1685 (2013); https://doi.org/10.1177/1060028013509792.
L. Lorusso, L. Pieruzzi, A. Biagini, E. Sabini, L. Valerio, C. Giani, P. Passannanti, B. Pontillo-Contillo, V. Battaglia, S. Mazzeo, E. Molinaro and R. Elisei, Onco Targets Ther., 9, 6467 (2016); https://doi.org/10.2147/OTT.S84625.
H.H. Wong and T. Eisen, Expert Rev. Anticancer Ther., 13, 649 (2013); https://doi.org/10.1586/era.13.40.
M. Marlow, M. Al-Ameedee, T. Smith, S. Wheeler and M.J. Stocks, Chem. Commun., 51, 6384 (2015); https://doi.org/10.1039/C5CC00454C.
C. Spyropoulos and C.G. Kokotos, J. Org. Chem., 79, 4477 (2014); https://doi.org/10.1021/jo500492x.
F. Bigi, R. Maggi and G. Sartori, Green Chem., 2, 140 (2000); https://doi.org/10.1039/b002127j.
E.V. Vinogradova, B.P. Fors and S.L. Buchwald, J. Am. Chem. Soc., 134, 11132 (2012); https://doi.org/10.1021/ja305212v.
S.H. Lee, H. Matsushita, B. Clapham and K.D. Janda, Tetrahedron, 60, 3439 (2004); https://doi.org/10.1016/j.tet.2004.02.034.
S. Woodward and S. Dagorne, eds.: K. Kolb and P.V. Zezschwitz, Modern Organoaluminum Reagents; Springer-Verlag Berlin Heidelberg, p. 245 (2013).
D. Ashok, A. Ganesh, B. Vijaya Lakshmi and S. Ravi, Russ. J. Gen. Chem., 84, 1237 (2014); https://doi.org/10.1134/S1070363214060309.
A. Lew, P.O. Krutzik, M.E. Hart and A.R. Chamberlin, J. Comb. Chem., 4, 95 (2002); https://doi.org/10.1021/cc010048o.