Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chemical Reaction of Interaction of Hypocrellin B with Gelatin-Formation of Cysteine-Substituted Derivative
Corresponding Author(s) : Wei Liu
Asian Journal of Chemistry,
Vol. 27 No. 8 (2015): Vol 27 Issue 8
Abstract
The interactions between hypocrellin B (HB) and two types of gelatin (G) were studied in this work. The maximum absorption wavelength of hypocrellin B-Type II gelatin was red-shifted with appearance of an isosbestic point at around 480 nm after interacted with Type II gelatin at pH 7.4. At the same time, the fluorescence of hypocrellin B-Type II gelatin was almost quenched completely. On the other hand, the absorption spectral indicated that the interaction of hypocrellin B with the cysteine-deficient Type I gelatin resembled those for hypocrellin B binding to the hydrophobic area of biomolecules. After reacted with Type II gelatin, hypocrellin B could not be extracted by organic solvent, suggesting a covalent bonding to the protein framework. Furthermore, it was proved that the spectra of hypocrellin B-Type II gelatin was very similar to those of 5,8-2-cysteine-hypocrellin B and the reaction was inhibited by potassium-ferricyanide. All of these evidences confirm that a chemical derivative, cysteine-S-hypocrellin B, was formed via reaction of hypocrellin B with Type II gelatin. It was further proved that the Type II gelatin did not possess a hydrophobic area for binding of hypocrellin B but the Type I did. Accordingly, it implies that Type I gelatin is a proper choice as a drug carrier while Type II is not a proper drug carrier when a drug molecule has electrohphiles in the structure that can be attacked by cysteine in Type II gelatin. Furthermore, the spectral indicated that hypocrellin B may be used to recognize a denatured protein containing cysteine from the nature ones.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.A. Kraus, W. Zhang, M.J. Fehr, J.W. Petrich, Y. Wannemuehler and S. Carpenter, Chem. Rev., 96, 523 (1996); doi:10.1021/cr9500139.
- M.J. Fehr, S.L. Carpenter, Y. Wannemuehler and J.W. Petrich, Biochemistry, 34, 15845 (1995); doi:10.1021/bi00048a030.
- J.B. Hudson, J. Zhou, J. Chen, L. Harris, L. Yip and G.H.N. Towers, Photochem. Photobiol., 60, 253 (1994); doi:10.1111/j.1751-1097.1994.tb05100.x.
- J. Ma, J. Zhao and L. Jiang, Photochem. Photobiol., 74, 143 (2001); doi:10.1562/0031-8655(2001)074<0143:EOSMOP>2.0.CO;2.
- S.J. Xu, S. Chen, M.H. Zhang and T. Shen, J. Org. Chem., 68, 2048 (2003); doi:10.1021/jo026554x.
- K. Das, D.S. English and J.W. Petrich, J. Am. Chem. Soc., 119, 2763 (1997); doi:10.1021/ja962923t.
- K. Das, A.V. Smirnov, J. Wen, P. Miskovsky and J.W. Petrich, Photochem. Photobiol., 69, 633 (1999); doi:10.1111/j.1751-1097.1999.tb03339.x.
- B. Zhao, J. Xie and J. Zhao, Biochim. Biophys. Acta, 1722, 124 (2005); doi:10.1016/j.bbagen.2004.12.009.
- B. Zhao, L. Song, X. Liu, J. Xie and J. Zhao, Bioorg. Med. Chem., 14, 2428 (2006); doi:10.1016/j.bmc.2005.11.022.
- X. Jin, Y. Zhao, J. Xie and J. Zhao, Sci. China B, 47, 335 (2004); doi:10.1360/03yb0190.
- L. Song, B. Zhao, J. Xie and J. Zhao, Biochim. Biophys. Acta, 1760, 333 (2006); doi:10.1016/j.bbagen.2006.01.001.
- L. Song, J. Xie, C. Zhang, C. Li and J. Zhao, Photochem. Photobiol. Sci., 6, 683 (2007); doi:10.1039/b618678e.
- B. Zhao, J. Xie and J. Zhao, Biochim. Biophys. Acta, 1670, 113 (2004); doi:10.1016/j.bbagen.2003.10.018.
- K.H. Zhao and L.J. Jiang, Org. Chem. China, 9, 252 (1989).
- L. Ma, M.H. Zhang and L.J. Jiang, Chin. Sci. Bull., 37, 560 (1992).
- Y. Zhu, A. Oganesian, D.R. Keene and L.J. Sandell, J. Cell Biol., 144, 1069 (1999); doi:10.1083/jcb.144.5.1069.
- M.C. Ryan and L.J. Sandell, J. Biol. Chem., 265, 10334 (1990).
- J.E. Eastoe, Biochem. J., 61, 589 (1955).
- K.K. Verma, J. Ahmed and S. Bose, Mikrochim. Acta, 67, 161 (1977); doi:10.1007/BF01196541.
- J.C. Allen and W.L. Wrieden, J. Dairy Res., 49, 239 (1982); doi:10.1017/S0022029900022342.
- C. Little and P.J. O’Brien, Arch. Biochem. Biophys., 122, 406 (1967); doi:10.1016/0003-9861(67)90212-3.
- L. Ma, M.H. Zhang and L.J. Jiang, Sci. China B, 12, 1248 (1992).
- Y.-Y. He, J.-Y. An, W. Zou and L.-J. Jiang, J. Photochem. Photobiol. B, 44, 45 (1998); doi:10.1016/S1011-1344(98)00116-X.
- J.M. Berg, J.L. Tymoczko and L. Stryer, Protein Structure and Function, In: Biochemistry, edn. 5, Chap. 3, p. 50, W.H. Freeman and Company (2002).
References
G.A. Kraus, W. Zhang, M.J. Fehr, J.W. Petrich, Y. Wannemuehler and S. Carpenter, Chem. Rev., 96, 523 (1996); doi:10.1021/cr9500139.
M.J. Fehr, S.L. Carpenter, Y. Wannemuehler and J.W. Petrich, Biochemistry, 34, 15845 (1995); doi:10.1021/bi00048a030.
J.B. Hudson, J. Zhou, J. Chen, L. Harris, L. Yip and G.H.N. Towers, Photochem. Photobiol., 60, 253 (1994); doi:10.1111/j.1751-1097.1994.tb05100.x.
J. Ma, J. Zhao and L. Jiang, Photochem. Photobiol., 74, 143 (2001); doi:10.1562/0031-8655(2001)074<0143:EOSMOP>2.0.CO;2.
S.J. Xu, S. Chen, M.H. Zhang and T. Shen, J. Org. Chem., 68, 2048 (2003); doi:10.1021/jo026554x.
K. Das, D.S. English and J.W. Petrich, J. Am. Chem. Soc., 119, 2763 (1997); doi:10.1021/ja962923t.
K. Das, A.V. Smirnov, J. Wen, P. Miskovsky and J.W. Petrich, Photochem. Photobiol., 69, 633 (1999); doi:10.1111/j.1751-1097.1999.tb03339.x.
B. Zhao, J. Xie and J. Zhao, Biochim. Biophys. Acta, 1722, 124 (2005); doi:10.1016/j.bbagen.2004.12.009.
B. Zhao, L. Song, X. Liu, J. Xie and J. Zhao, Bioorg. Med. Chem., 14, 2428 (2006); doi:10.1016/j.bmc.2005.11.022.
X. Jin, Y. Zhao, J. Xie and J. Zhao, Sci. China B, 47, 335 (2004); doi:10.1360/03yb0190.
L. Song, B. Zhao, J. Xie and J. Zhao, Biochim. Biophys. Acta, 1760, 333 (2006); doi:10.1016/j.bbagen.2006.01.001.
L. Song, J. Xie, C. Zhang, C. Li and J. Zhao, Photochem. Photobiol. Sci., 6, 683 (2007); doi:10.1039/b618678e.
B. Zhao, J. Xie and J. Zhao, Biochim. Biophys. Acta, 1670, 113 (2004); doi:10.1016/j.bbagen.2003.10.018.
K.H. Zhao and L.J. Jiang, Org. Chem. China, 9, 252 (1989).
L. Ma, M.H. Zhang and L.J. Jiang, Chin. Sci. Bull., 37, 560 (1992).
Y. Zhu, A. Oganesian, D.R. Keene and L.J. Sandell, J. Cell Biol., 144, 1069 (1999); doi:10.1083/jcb.144.5.1069.
M.C. Ryan and L.J. Sandell, J. Biol. Chem., 265, 10334 (1990).
J.E. Eastoe, Biochem. J., 61, 589 (1955).
K.K. Verma, J. Ahmed and S. Bose, Mikrochim. Acta, 67, 161 (1977); doi:10.1007/BF01196541.
J.C. Allen and W.L. Wrieden, J. Dairy Res., 49, 239 (1982); doi:10.1017/S0022029900022342.
C. Little and P.J. O’Brien, Arch. Biochem. Biophys., 122, 406 (1967); doi:10.1016/0003-9861(67)90212-3.
L. Ma, M.H. Zhang and L.J. Jiang, Sci. China B, 12, 1248 (1992).
Y.-Y. He, J.-Y. An, W. Zou and L.-J. Jiang, J. Photochem. Photobiol. B, 44, 45 (1998); doi:10.1016/S1011-1344(98)00116-X.
J.M. Berg, J.L. Tymoczko and L. Stryer, Protein Structure and Function, In: Biochemistry, edn. 5, Chap. 3, p. 50, W.H. Freeman and Company (2002).