Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Computational Study on the Second-Order Nonlinear Optical Properties of Coumarin Derivatives with N-p-Vinylphenyl Carbazole Chromophores
Corresponding Author(s) : Gang Wang
Asian Journal of Chemistry,
Vol. 26 No. 21 (2014): Vol 26 Issue 21
Abstract
Based on the density functional theory, a computational study was performed to investigate the second-order nonlinear optical properties of ten coumarin derivatives with N-p-vinylphenyl carbazole chromophores. All tested derivatives were divided into two groups, one with different substituent groups on carbazole (named as compounds b1 to b4) and the other with the N-p-vinylphenyl carbazole substituent modified at different positions on coumarin (named as compounds a to f). The geometrical structure of these derivatives were first comprehensively optimized through density functional theory method at B3LYP/6-311G level. Then their static second-order nonlinear optical polarizabilities (b) were calculated at the same level and the molecular electric spectrum of each derivative was obtained via the time dependent density functional theory (TD-DFT). Computational results show that all these derivatives have large btot values and excellent transparence. However, as compared to compounds a-f, compounds b1-b4 have longer conjugated bridges and larger btot values and show better planarity. It suggests that low transition energy, large Dμeg values and large charge transfer range play vital roles in the high second-order nonlinear optical response.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Gnanasekaran and J. Madhavan, Asian J. Chem., 22, 109(2010).
- V.M. Geskin, C. Lambert and J.L. Bredas, J. Am. Chem. Soc., 125, 15651 (2003); doi:10.1021/ja035862p.
- Z.J. Li, Z.R. Li, F.F. Wang, F. Ma, M.M. Chen and X.R. Huang, Chem. Phys. Lett., 468, 319 (2009); doi:10.1016/j.cplett.2008.12.034.
- J.L. Humphrey, K.M. Lott, M.E. Wright and D. Kuciauskas, J. Phys. Chem. B, 109, 21496 (2005); doi:10.1021/jp054980r.
- R. Andreu, M.J. Blesa, L. Carrasquer, J. Garín, J. Orduna, B. Villacampa, R. Alcalá, J. Casado, M.C. Ruiz Delgado, J.T. López Navarrete and M. Allain, J. Am. Chem. Soc., 127, 8835 (2005); doi:10.1021/ja051819l.
- H.T. Bai, H.C. Lin and T.Y. Luh, J. Org. Chem., 75, 4591 (2010); doi:10.1021/jo100873z.
- K. Mohanalingam, P.C. Ray and P.K. Das, Synth. Met., 82, 47 (1996); doi:10.1016/S0379-6779(97)80008-2.
- Q.Q. Li, C.G. Lu, J. Zhu, E.Q. Fu, C. Zhong, S.Y. Li, Y.P. Cui, J.G. Qin and Z. Li, J. Phys. Chem. B, 112, 4545 (2008); doi:10.1021/jp0768322.
- F. Rong-Wei, L. Xiao-Hui, Y. Sai-Sai, J. Yu-Gang, X. Yuan-Qin and C. De-Ying, Chin. Phys. Lett., 25, 700 (2008); doi:10.1088/0256-307X/25/2/094.
- U. Tripathy and P.B. Bisht, Chem. Phys., 125, 144502 (2006); doi:10.1063/1.2354152.
- C.H. Lu, H. Zhang, S.A. Zhang and Z.R. Sun, Chin. Phys. B., 21, 123202 (2012); doi:10.1088/1674-1056/21/12/123202.
- H. Sekino, Y. Maeda and M. Kamiya, Mol. Phys., 103, 2183 (2005); doi:10.1080/00268970500083994.
- B. Kirtman, S. Bonness, A. Ramirez-Solis, B. Champagne, H. Matsumoto and H. Sekino, J. Chem. Phys., 128, 114108 (2008); doi:10.1063/1.2885051.
- M. Kamiya, H. Sekino, T. Tsuneda and K. Hirao, J. Chem. Phys., 122, 234111 (2005); doi:10.1063/1.1935514.
- J.L. Oudar and D.S. Chemla, J. Chem. Phys., 66, 2664 (1977); doi:10.1063/1.434213.
- D.R. Kanis, M.A. Ratner and T. Marks, J. Chem. Rev., 94, 195 (1994); doi:10.1021/cr00025a007.
- A. Curioni, M. Boero and W. Andreoni, Chem. Phys. Lett., 294, 263 (1998); doi:10.1016/S0009-2614(98)00829-X.
References
P. Gnanasekaran and J. Madhavan, Asian J. Chem., 22, 109(2010).
V.M. Geskin, C. Lambert and J.L. Bredas, J. Am. Chem. Soc., 125, 15651 (2003); doi:10.1021/ja035862p.
Z.J. Li, Z.R. Li, F.F. Wang, F. Ma, M.M. Chen and X.R. Huang, Chem. Phys. Lett., 468, 319 (2009); doi:10.1016/j.cplett.2008.12.034.
J.L. Humphrey, K.M. Lott, M.E. Wright and D. Kuciauskas, J. Phys. Chem. B, 109, 21496 (2005); doi:10.1021/jp054980r.
R. Andreu, M.J. Blesa, L. Carrasquer, J. Garín, J. Orduna, B. Villacampa, R. Alcalá, J. Casado, M.C. Ruiz Delgado, J.T. López Navarrete and M. Allain, J. Am. Chem. Soc., 127, 8835 (2005); doi:10.1021/ja051819l.
H.T. Bai, H.C. Lin and T.Y. Luh, J. Org. Chem., 75, 4591 (2010); doi:10.1021/jo100873z.
K. Mohanalingam, P.C. Ray and P.K. Das, Synth. Met., 82, 47 (1996); doi:10.1016/S0379-6779(97)80008-2.
Q.Q. Li, C.G. Lu, J. Zhu, E.Q. Fu, C. Zhong, S.Y. Li, Y.P. Cui, J.G. Qin and Z. Li, J. Phys. Chem. B, 112, 4545 (2008); doi:10.1021/jp0768322.
F. Rong-Wei, L. Xiao-Hui, Y. Sai-Sai, J. Yu-Gang, X. Yuan-Qin and C. De-Ying, Chin. Phys. Lett., 25, 700 (2008); doi:10.1088/0256-307X/25/2/094.
U. Tripathy and P.B. Bisht, Chem. Phys., 125, 144502 (2006); doi:10.1063/1.2354152.
C.H. Lu, H. Zhang, S.A. Zhang and Z.R. Sun, Chin. Phys. B., 21, 123202 (2012); doi:10.1088/1674-1056/21/12/123202.
H. Sekino, Y. Maeda and M. Kamiya, Mol. Phys., 103, 2183 (2005); doi:10.1080/00268970500083994.
B. Kirtman, S. Bonness, A. Ramirez-Solis, B. Champagne, H. Matsumoto and H. Sekino, J. Chem. Phys., 128, 114108 (2008); doi:10.1063/1.2885051.
M. Kamiya, H. Sekino, T. Tsuneda and K. Hirao, J. Chem. Phys., 122, 234111 (2005); doi:10.1063/1.1935514.
J.L. Oudar and D.S. Chemla, J. Chem. Phys., 66, 2664 (1977); doi:10.1063/1.434213.
D.R. Kanis, M.A. Ratner and T. Marks, J. Chem. Rev., 94, 195 (1994); doi:10.1021/cr00025a007.
A. Curioni, M. Boero and W. Andreoni, Chem. Phys. Lett., 294, 263 (1998); doi:10.1016/S0009-2614(98)00829-X.