This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Optical, Magnetic and Dielectric Properties of CoFe12O19 Synthesized in the Presence of Moringa oleifera Flower Extract
Corresponding Author(s) : Abhishek A. Gor
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
In this study, a unique approach was employed to synthesize M-type cobalt hexaferrite (CoFe12O19) using Moringa oleifera flower extract as a green capping agent. For 3 h, the calcination procedure was conducted at 1100 ºC. It was found that the structural, optical, microstructural, magnetic and dielectric properties of the generated cobalt hexaferrite were considerably affected by the presence of phytochemicals in floral extract. To evaluate the structural, surface morphological, optical, magnetic and dielectric properties of prepared ferrite, a variety of characterization techniques including FT-IR, XRD, UV-Vis, SEM, VSM and dielectric techniques were applied. The XRD analysis showed the formation of a hexagonal phase along with hematite and cobalt ferrite, while the surface morphology showed hexagonal shaped platelet structure. With a saturation magnetization (Ms) of 14.94 emu/g and a coercivity (Hc) of 1790.9 Oe, the CoFe12O19 powder demonstrated a multidomain nature, which is a magnetically hard material. Furthermore, the energy bandgap of the cobalt ferrite was observed to be 2.01 eV. Low frequency dielectric measurement was carried out at room temperature and ε'max ~ 46 found at 30 Hz with tan δ equals to 0.103. The dielectric behaviour with frequency follows the Koop’s model and Maxwell-Wagner theory. One semicircle arc was observed in Cole-Cole plot.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Mizuno, S. Taruta and K. Kitajima, J. Mater. Sci., 40, 165 (2005); https://doi.org/10.1007/s10853-005-5702-5
- R.C. Pullar, Prog. Mater. Sci., 57, 1191 (2012); https://doi.org/10.1016/j.pmatsci.2012.04.001
- V.P. Singh, R. Jasrotia, R. Kumar, P. Raizada, S. Thakur, K.M. Batoo and M. Singh, World J. Conden. Matt. Phys., 8, 36 (2018); https://doi.org/10.4236/wjcmp.2018.82004
- G. Oza, A. Reyes-Calderón, A. Mewada, L.G. Arriaga, G.B. Cabrera, D.E. Luna, H.M.N. Iqbal, M. Sharon and A. Sharma, J. Mater. Sci., 55, 1309 (2020); https://doi.org/10.1007/s10853-019-04121-3
- N.Z. Abd Rani, K. Husain and E. Kumolosasi, Front. Pharmacol., 9, 108 (2018); https://doi.org/10.3389/fphar.2018.00108
- M.R. Bindhu, M. Umadevi, G.A. Esmail, N.A. Al-Dhabi abd M.V. Arasu, J. Photochem. Photobiol. B: Biol., 205, 111836 (2020); https://doi.org/10.1016/j.jphotobiol.2020.111836
- P. Virk, Manal A. Awad, S.S. Abdu-llah Alsaif, A.A. Hendi, M. Elobeid, K. Ortashi, R. Qindeel, M.F. El-Khadragy, H.M. Yehia, M.F.S. El-Din and H.A. Salama, J. King Saud Univ. Sci., 35, 102576 (2023); https://doi.org/10.1016/j.jksus.2023.102576
- J.S. Moodley, S.B.N. Krishna, K. Pillay, Sershen and P. Govender, Adv. Nat. Sci: Nanosci. Nanotechnol., 9, 015011 (2018); https://doi.org/10.1088/2043-6254/aaabb2
- A. Venkatachalam, J.P. Jesuraj and K. Sivaperuman, J. Chem., 2021, 4301504 (2021); https://doi.org/10.1155/2021/4301504
- M.S. Kiran, C.R. Rajith Kumar, U.R. Shwetha, H.S. Onkarappa, V.S. Betageri and M.S. Latha, Chem. Data Coll., 33, 100714 (2021); https://doi.org/10.1016/j.cdc.2021.100714
- M.M. Haque, M. Huq and M.A. Hakim, Mater. Chem. Phys., 112, 580 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.097
- Ravleen, S.K. Godara, B. Kaur, V. Kaur, A.K. Sood, P.S. Malhi, G. Ram Bhadu, I. Pushkarna and M. Singh, Mater. Today Proc., 28, 1 (2020); https://doi.org/10.1016/j.matpr.2019.12.056
- F. Ansari, F. Soofivand and M. Salavati-Niasari, Compos., Part B Eng., 165, 500 (2019); https://doi.org/10.1016/j.compositesb.2019.02.010
- C. Bohlender, M. Kahnes, R. Müller and J. Töpfer, J. Mater. Sci., 54, 1136 (2019); https://doi.org/10.1007/s10853-018-2916-x
- M. Younas, M.H. Rasool, M. Khurshid, A. Khan, M.Z. Nawaz, I. Ahmad and M.N. Lakhan, Biochem. Syst. Ecol., 107, 104605 (2023); https://doi.org/10.1016/j.bse.2023.104605
- J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, B Basic Res., 15, 627 (1966); https://doi.org/10.1002/pssb.19660150224
- G. Rana, U.C. Johri and K. Asokan, Europhys. Lett., 103, 17008 (2013); https://doi.org/10.1209/0295-5075/103/17008
- Z.K. Heiba, M. Bakr Mohamed, A.M. El-naggar and A.A. Albassam, Results Phys., 24, 104116 (2021); https://doi.org/10.1016/j.rinp.2021.104116
- A.M. Abo El Ata and M.A. Ahmed, J. Magn. Magn. Mater., 208, 27 (2000); https://doi.org/10.1016/S0304-8853(99)00547-8
- A. Singh, S.B. Narang, K. Singh, P. Sharma and O.P. Pandey, Eur. Phys. J. Appl. Phys., 33, 189 (2006); https://doi.org/10.1051/epjap:2006016
- M. Nyathani, G. Sriramulu, T.A. Babu, N.V. Prasad, D. Ravinder and S. Katlakunta, Biointerface Res. Appl. Chem., 12, 929 (2021); https://doi.org/10.33263/BRIAC121.929939
- J.C. Maxwell, A Treatise on Electricity and Magnetism, Cambridge University Press (2010).
- X. Li and G.L. Tan, J. Alloys Compd., 858, 157722 (2021); https://doi.org/10.1016/j.jallcom.2020.157722
- C.G. Koops, Phys. Rev., 83, 121 (1951); https://doi.org/10.1103/PhysRev.83.121
- B. Ahmad, S. Mumtaz, N. Karamat, R.S. Gohar, M.N. Ashiq and A. Shah, J. Saudi Chem. Soc., 23, 407 (2019); https://doi.org/10.1016/j.jscs.2018.06.008
- A. Aslam, M.U. Islam, I. Ali, M.S. Awan, M. Irfan and A. Iftikhar, Ceram. Int., 40, 155 (2014); https://doi.org/10.1016/j.ceramint.2013.05.116
- C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha and K. Ghosh, J. Appl. Phys., 114, 183907 (2013); https://doi.org/10.1063/1.4827416
- A. Gonchar, S. Gorelik, S. Katynkina, L. Letyuk and I. Ryabov, J. Magn. Magn. Mater., 215–216, 221 (2000); https://doi.org/10.1016/S0304-8853(00)00305-X
- P.B. Macedo, C.T. Moynihan and R. Bose, Phys. Chem. Glasses, 13, 171 (1972).
References
Y. Mizuno, S. Taruta and K. Kitajima, J. Mater. Sci., 40, 165 (2005); https://doi.org/10.1007/s10853-005-5702-5
R.C. Pullar, Prog. Mater. Sci., 57, 1191 (2012); https://doi.org/10.1016/j.pmatsci.2012.04.001
V.P. Singh, R. Jasrotia, R. Kumar, P. Raizada, S. Thakur, K.M. Batoo and M. Singh, World J. Conden. Matt. Phys., 8, 36 (2018); https://doi.org/10.4236/wjcmp.2018.82004
G. Oza, A. Reyes-Calderón, A. Mewada, L.G. Arriaga, G.B. Cabrera, D.E. Luna, H.M.N. Iqbal, M. Sharon and A. Sharma, J. Mater. Sci., 55, 1309 (2020); https://doi.org/10.1007/s10853-019-04121-3
N.Z. Abd Rani, K. Husain and E. Kumolosasi, Front. Pharmacol., 9, 108 (2018); https://doi.org/10.3389/fphar.2018.00108
M.R. Bindhu, M. Umadevi, G.A. Esmail, N.A. Al-Dhabi abd M.V. Arasu, J. Photochem. Photobiol. B: Biol., 205, 111836 (2020); https://doi.org/10.1016/j.jphotobiol.2020.111836
P. Virk, Manal A. Awad, S.S. Abdu-llah Alsaif, A.A. Hendi, M. Elobeid, K. Ortashi, R. Qindeel, M.F. El-Khadragy, H.M. Yehia, M.F.S. El-Din and H.A. Salama, J. King Saud Univ. Sci., 35, 102576 (2023); https://doi.org/10.1016/j.jksus.2023.102576
J.S. Moodley, S.B.N. Krishna, K. Pillay, Sershen and P. Govender, Adv. Nat. Sci: Nanosci. Nanotechnol., 9, 015011 (2018); https://doi.org/10.1088/2043-6254/aaabb2
A. Venkatachalam, J.P. Jesuraj and K. Sivaperuman, J. Chem., 2021, 4301504 (2021); https://doi.org/10.1155/2021/4301504
M.S. Kiran, C.R. Rajith Kumar, U.R. Shwetha, H.S. Onkarappa, V.S. Betageri and M.S. Latha, Chem. Data Coll., 33, 100714 (2021); https://doi.org/10.1016/j.cdc.2021.100714
M.M. Haque, M. Huq and M.A. Hakim, Mater. Chem. Phys., 112, 580 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.097
Ravleen, S.K. Godara, B. Kaur, V. Kaur, A.K. Sood, P.S. Malhi, G. Ram Bhadu, I. Pushkarna and M. Singh, Mater. Today Proc., 28, 1 (2020); https://doi.org/10.1016/j.matpr.2019.12.056
F. Ansari, F. Soofivand and M. Salavati-Niasari, Compos., Part B Eng., 165, 500 (2019); https://doi.org/10.1016/j.compositesb.2019.02.010
C. Bohlender, M. Kahnes, R. Müller and J. Töpfer, J. Mater. Sci., 54, 1136 (2019); https://doi.org/10.1007/s10853-018-2916-x
M. Younas, M.H. Rasool, M. Khurshid, A. Khan, M.Z. Nawaz, I. Ahmad and M.N. Lakhan, Biochem. Syst. Ecol., 107, 104605 (2023); https://doi.org/10.1016/j.bse.2023.104605
J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, B Basic Res., 15, 627 (1966); https://doi.org/10.1002/pssb.19660150224
G. Rana, U.C. Johri and K. Asokan, Europhys. Lett., 103, 17008 (2013); https://doi.org/10.1209/0295-5075/103/17008
Z.K. Heiba, M. Bakr Mohamed, A.M. El-naggar and A.A. Albassam, Results Phys., 24, 104116 (2021); https://doi.org/10.1016/j.rinp.2021.104116
A.M. Abo El Ata and M.A. Ahmed, J. Magn. Magn. Mater., 208, 27 (2000); https://doi.org/10.1016/S0304-8853(99)00547-8
A. Singh, S.B. Narang, K. Singh, P. Sharma and O.P. Pandey, Eur. Phys. J. Appl. Phys., 33, 189 (2006); https://doi.org/10.1051/epjap:2006016
M. Nyathani, G. Sriramulu, T.A. Babu, N.V. Prasad, D. Ravinder and S. Katlakunta, Biointerface Res. Appl. Chem., 12, 929 (2021); https://doi.org/10.33263/BRIAC121.929939
J.C. Maxwell, A Treatise on Electricity and Magnetism, Cambridge University Press (2010).
X. Li and G.L. Tan, J. Alloys Compd., 858, 157722 (2021); https://doi.org/10.1016/j.jallcom.2020.157722
C.G. Koops, Phys. Rev., 83, 121 (1951); https://doi.org/10.1103/PhysRev.83.121
B. Ahmad, S. Mumtaz, N. Karamat, R.S. Gohar, M.N. Ashiq and A. Shah, J. Saudi Chem. Soc., 23, 407 (2019); https://doi.org/10.1016/j.jscs.2018.06.008
A. Aslam, M.U. Islam, I. Ali, M.S. Awan, M. Irfan and A. Iftikhar, Ceram. Int., 40, 155 (2014); https://doi.org/10.1016/j.ceramint.2013.05.116
C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha and K. Ghosh, J. Appl. Phys., 114, 183907 (2013); https://doi.org/10.1063/1.4827416
A. Gonchar, S. Gorelik, S. Katynkina, L. Letyuk and I. Ryabov, J. Magn. Magn. Mater., 215–216, 221 (2000); https://doi.org/10.1016/S0304-8853(00)00305-X
P.B. Macedo, C.T. Moynihan and R. Bose, Phys. Chem. Glasses, 13, 171 (1972).