Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Voltammetric Determination of Ferulic Acid on Carbon Mesoporous Modified Glassy Carbon Electrode
Corresponding Author(s) : Ayushi Srivastava
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
The electrochemical determination of ferulic acid was carried out with highly sensitive and rapid square wave voltammetry (SWV) and cyclic voltammetry (CV) techniques by using bare glassy carbon electrode and carbon mesoporous fabricated glassy carbon electrode (CMP/GCE). The oxidation kinetics of ferulic acid was studied after the experimental conditions were optimized. A voltammetric study of ferulic acid at the CMP/GCE electrode exhibited a well-defined anodic peak in phosphate buffer at pH 2.2. The square wave oxidation peak current of ferulic acid was linearly increased over the concentration range from 1 to 7 μg mL-1. The LOD and LOQ for ferulic acid were calculated as 0.36 and 1.10 μg mL-1, respectively. The analytical application of the developed sensor was evaluated by a real sample analysis of ferulic acid in sweet corn.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ou and K.-C. Kwok, J. Sci. Food Agric., 84, 1261 (2004); https://doi.org/10.1002/jsfa.1873
- A. Urbaniak, M. Szelag and M. Molski, Comput. Theor. Chem., 1012, 33 (2013); https://doi.org/10.1016/j.comptc.2013.02.018
- J. Kanski, M. Aksenova, A. Stoyanova and D.A. Butterfield, J. Nutr. Biochem., 13, 273 (2002); https://doi.org/10.1016/S0955-2863(01)00215-7
- S.Y. Chung and E.T. Champagne, Food Chem., 124, 1639 (2011); https://doi.org/10.1016/j.foodchem.2010.07.086
- A. Murakami, Y. Nakamura, K. Koshimizu, D. Takahashi, T. Tsuno, K. Matsumoto, K. Hagihara, H. Taniguchi, E. Nomura, A. Hosoda, Y. Maruta, H.W. Kim, K. Kawabata and H. Ohigashi, Cancer Lett., 180, 121 (2002); https://doi.org/10.1016/S0304-3835(01)00858-8
- A.J. Blasco, A. González Crevillén, M.C. González and A. Escarpa, Electroanalysis, 19, 2275 (2007); https://doi.org/10.1002/elan.200704004
- E. Graf, Free Radic. Biol. Med., 13, 435 (1992); https://doi.org/10.1016/0891-5849(92)90184-I
- M.A. Alam, C. Sernia and L. Brown, J. Cardiovasc. Pharmacol., 61, 240 (2013); https://doi.org/10.1097/FJC.0b013e31827cb600
- W. Sompong, A. Meeprom, H. Cheng and S. Adisakwattana, Molecules, 18, 13886 (2013); https://doi.org/10.3390/molecules181113886
- R. Sultana, Biochim. Biophys. Acta, 1822, 748 (2012); https://doi.org/10.1016/j.bbadis.2011.10.015
- H. Taniguchi, A. Hosoda, T. Tsuno, Y. Maruta and E. Nomura, Anticancer Res., 19, 3757 (1999).
- S. Pal, S. Maity, S. Sardar, S. Begum, R. Dalui, H. Parvej, K. Bera, A. Pradhan, N. Sepay, S. Paul and U.C. Halder, J. Chem. Sci., 132, 103 (2020); https://doi.org/10.1007/s12039-020-01796-z
- R.K. Harwansh, P.K. Mukherjee, S. Bahadur and R. Biswas, Life Sci., 141, 202 (2015); https://doi.org/10.1016/j.lfs.2015.10.001
- W.D. Cai, J. Zhu, L.X. Wu, Z.R. Qiao, L. Li and J.K. Yan, Food Chem., 300, 125221 (2019); https://doi.org/10.1016/j.foodchem.2019.125221
- A. Amic, Z. Markovic, J.M. Dimitric Markovic, D. Milenkovic and V. Stepanic, Phytochemistry, 170, 112218 (2020); https://doi.org/10.1016/j.phytochem.2019.112218
- S. Palani Swamy and V. Govindaswamy, J. Funct. Foods, 17, 657 (2015); https://doi.org/10.1016/j.jff.2015.06.013
- Z. Xia, Y. Zhang, Q. Li, H. Du, G. Gui and G. Zhao, Int. J. Electrochem. Sci., 15, 559 (2020); https://doi.org/10.20964/2020.01.49
- X. Li, G. Liu, Y. Tu, J. Li and S. Yan, Food Chem., 278, 502 (2019); https://doi.org/10.1016/j.foodchem.2018.10.086
- S. Irshad and S. Khatoon, J. Planar Chromatogr. Mod. TLC, 31, 429 (2018); https://doi.org/10.1556/1006.2018.31.6.2
- C.M.A. Brett and A.M.O. Brett, Electrochim. Acta, 39, 853 (1993).
- P.T. Kissinger, W.H. Heineman, Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Marcel Dekker, INC.: New York and Basel (1996).
- A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Edn.: 2, Wiley: New York (1980).
- R. Jain, R. Mishra and A. Dwivedi, J. Sci. Ind. Res. (India), 68, 945 (2008).
- A. Sinha, R. Dhanjai and R. Jain, Mater. Res. Bull., 65, 307 (2015); https://doi.org/10.1016/j.materresbull.2015.02.001
- M.A. Zulkifli, A. Afandi and A.T.M. Din, AIP Conf. Proc., 2124, 020026 (2019); https://doi.org/10.1063/1.5117086
- K. Singh, N. Jadon and R. Jain, Colloids Surf. B Biointerfaces, 166, 72 (2018); https://doi.org/10.1016/j.colsurfb.2018.02.057
- R. Jain and A. Verma, Int. J. Electrochem. Sci., 12, 3459 (2017); https://doi.org/10.20964/2017.04.29
References
S. Ou and K.-C. Kwok, J. Sci. Food Agric., 84, 1261 (2004); https://doi.org/10.1002/jsfa.1873
A. Urbaniak, M. Szelag and M. Molski, Comput. Theor. Chem., 1012, 33 (2013); https://doi.org/10.1016/j.comptc.2013.02.018
J. Kanski, M. Aksenova, A. Stoyanova and D.A. Butterfield, J. Nutr. Biochem., 13, 273 (2002); https://doi.org/10.1016/S0955-2863(01)00215-7
S.Y. Chung and E.T. Champagne, Food Chem., 124, 1639 (2011); https://doi.org/10.1016/j.foodchem.2010.07.086
A. Murakami, Y. Nakamura, K. Koshimizu, D. Takahashi, T. Tsuno, K. Matsumoto, K. Hagihara, H. Taniguchi, E. Nomura, A. Hosoda, Y. Maruta, H.W. Kim, K. Kawabata and H. Ohigashi, Cancer Lett., 180, 121 (2002); https://doi.org/10.1016/S0304-3835(01)00858-8
A.J. Blasco, A. González Crevillén, M.C. González and A. Escarpa, Electroanalysis, 19, 2275 (2007); https://doi.org/10.1002/elan.200704004
E. Graf, Free Radic. Biol. Med., 13, 435 (1992); https://doi.org/10.1016/0891-5849(92)90184-I
M.A. Alam, C. Sernia and L. Brown, J. Cardiovasc. Pharmacol., 61, 240 (2013); https://doi.org/10.1097/FJC.0b013e31827cb600
W. Sompong, A. Meeprom, H. Cheng and S. Adisakwattana, Molecules, 18, 13886 (2013); https://doi.org/10.3390/molecules181113886
R. Sultana, Biochim. Biophys. Acta, 1822, 748 (2012); https://doi.org/10.1016/j.bbadis.2011.10.015
H. Taniguchi, A. Hosoda, T. Tsuno, Y. Maruta and E. Nomura, Anticancer Res., 19, 3757 (1999).
S. Pal, S. Maity, S. Sardar, S. Begum, R. Dalui, H. Parvej, K. Bera, A. Pradhan, N. Sepay, S. Paul and U.C. Halder, J. Chem. Sci., 132, 103 (2020); https://doi.org/10.1007/s12039-020-01796-z
R.K. Harwansh, P.K. Mukherjee, S. Bahadur and R. Biswas, Life Sci., 141, 202 (2015); https://doi.org/10.1016/j.lfs.2015.10.001
W.D. Cai, J. Zhu, L.X. Wu, Z.R. Qiao, L. Li and J.K. Yan, Food Chem., 300, 125221 (2019); https://doi.org/10.1016/j.foodchem.2019.125221
A. Amic, Z. Markovic, J.M. Dimitric Markovic, D. Milenkovic and V. Stepanic, Phytochemistry, 170, 112218 (2020); https://doi.org/10.1016/j.phytochem.2019.112218
S. Palani Swamy and V. Govindaswamy, J. Funct. Foods, 17, 657 (2015); https://doi.org/10.1016/j.jff.2015.06.013
Z. Xia, Y. Zhang, Q. Li, H. Du, G. Gui and G. Zhao, Int. J. Electrochem. Sci., 15, 559 (2020); https://doi.org/10.20964/2020.01.49
X. Li, G. Liu, Y. Tu, J. Li and S. Yan, Food Chem., 278, 502 (2019); https://doi.org/10.1016/j.foodchem.2018.10.086
S. Irshad and S. Khatoon, J. Planar Chromatogr. Mod. TLC, 31, 429 (2018); https://doi.org/10.1556/1006.2018.31.6.2
C.M.A. Brett and A.M.O. Brett, Electrochim. Acta, 39, 853 (1993).
P.T. Kissinger, W.H. Heineman, Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Marcel Dekker, INC.: New York and Basel (1996).
A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Edn.: 2, Wiley: New York (1980).
R. Jain, R. Mishra and A. Dwivedi, J. Sci. Ind. Res. (India), 68, 945 (2008).
A. Sinha, R. Dhanjai and R. Jain, Mater. Res. Bull., 65, 307 (2015); https://doi.org/10.1016/j.materresbull.2015.02.001
M.A. Zulkifli, A. Afandi and A.T.M. Din, AIP Conf. Proc., 2124, 020026 (2019); https://doi.org/10.1063/1.5117086
K. Singh, N. Jadon and R. Jain, Colloids Surf. B Biointerfaces, 166, 72 (2018); https://doi.org/10.1016/j.colsurfb.2018.02.057
R. Jain and A. Verma, Int. J. Electrochem. Sci., 12, 3459 (2017); https://doi.org/10.20964/2017.04.29