Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Dissolution and Stability of Arsenate/Phosphate Fluorapatite Solid Solution [Ca5(PxAs1-xO4)3F] in Aqueous Solution at 25 degree C
Corresponding Author(s) : Lingyun Mo
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
Arsenate/phosphate fluorapatite solid solutions [Ca5(PxAs1-xO4)3F] were synthesized and characterized and then their dissolution was studied at pH 2 at 25 °C. During the dissolution, the aqueous pH and Ca2+ increased quickly at the early stage and achieved a steady state after 48 h. The aqueous F– and PO43– concentrations increased rapidly and achieved a peak value in 1-3 h and then decreased slowly and showed stable after 200-400 h. With the decreasing mole fraction of Ca5(PO4)3F in the solid, the aqueous pH, Ca2+, F– and AsO43– concentrations increased, while the aqueous PO43– concentrations decreased. The F– anion was found to dissolve preferentially and the release of Ca2+ was always more in comparison with the release of PO43– and AsO43–. The dissolution of the phosphate-rich solids followed the Lippmann solutus curve, the dissolution of the arsenate-rich precipitates either followed or slightly overshot the Lippmann solutus curve, then approached the solutus curve.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.S.B. Narasaraju and D.E. Phebe, J. Mater. Sci., 31, 1 (1996); doi:10.1007/BF00355120.
- M. Kucharski, W. Mroz, J. Kowalczyk, B. Szafirska and M. Gluzinska, Arch. Metall., 47, 119 (2002).
- T. Itakura, R. Sasai and H. Itoh, J. Hazard. Mater., 146, 328 (2007); doi:10.1016/j.jhazmat.2006.12.025.
- P.A. O’Day, Elements, 2, 77 (2006); doi:10.2113/gselements.2.2.77.
- J.V. Bothe Jr. and P.W. Brown, J. Hazard. Mater., 69, 197 (1999); doi:10.1016/S0304-3894(99)00105-3.
- T. Nishimura and R.G. Robins, Miner. Process. Extr. Metallur. Rev., 18, 283 (1998); doi:10.1080/08827509808914159.
- Y. Zhu, Y. Chen, F. Long, J. Lan, N. He and M. Qian, Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 40, 2659 (2009); doi:10.1007/s11661-009-9974-2.
- Y. Zhu, X. Zhang, Y. Chen, Q. Xie, J. Lan, M. Qian and N. He, Chem. Geol., 268, 89 (2009); doi:10.1016/j.chemgeo.2009.07.014.
- Y. Zhu, X. Zhang, H. Zeng, H. Liu, N. He and M. Qian, Environ. Chem. Lett., 9, 339 (2011); doi:10.1007/s10311-010-0284-0.
- US Environmental Protection Agency, Trace Elements in Water, Solids and Biosolids by Stabilized Temperature Graphite Furnace Atomic Absorption Spectrometry, US EPA Method 200.9, EPA-821-R-01-011, Washington DC, USA (2001).
- D.L. Parkhurst and C.A.J. Appelo, Description of input and examples for PHREEQC version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Geological Survey Techniques and Methods, Book 6, Chap. A43 (1999).
- M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz and J. Ross, Biomaterials, 23, 751 (2002); doi:10.1016/S0142-9612(01)00180-6.
- C. Chaïrat, E.H. Oelkers, J. Schott and J.E. Lartigue, Geochim. Cosmochim. Acta, 71, 5888 (2007); doi:10.1016/j.gca.2007.09.026.
- S.V. Dorozhkin, Prog. Cryst. Growth Charact. Mater., 44, 45 (2002); doi:10.1016/S0960-8974(02)00004-9.
- A.R. Felmy, D. Rai and D.A. Moore, Geochim. Cosmochim. Acta, 57, 4345 (1993); doi:10.1016/0016-7037(93)90487-H.
- W. Stumm and J.J. Morgan, Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, John Wiley & Sons Inc., New York (1996).
- F.C.M. Driessens, Mineral Aspects of Dentistry, S. Karger AG, Basel (1982).
- E. Valsami-Jones, K.W. Ragnarsdottir, A. Putnis, D. Bosbach, A.J. Kemp and G. Cressey, Chem. Geol., 151, 215 (1998); doi:10.1016/S0009-2541(98)00081-3.
- T.D. Farr and K.L. Elmore, J. Phys. Chem., 66, 315 (1962); doi:10.1021/j100808a029.
- D. Baron and C.D. Palmer, Geochim. Cosmochim. Acta, 66, 2841 (2002); doi:10.1016/S0016-7037(02)00880-3.
- H. Gamsjäger, E. Königsberger and W. Preis, Aquat. Geochem., 6, 119 (2000); doi:10.1023/A:1009690502299.
- P.D. Glynn, E.J. Reardon, L.N. Plummer and E. Busenberg, Geochim. Cosmochim. Acta, 54, 267 (1990); doi:10.1016/0016-7037(90)90317-E.
- P.D. Glynn and E.J. Reardon, Am. J. Sci., 290, 164 (1990); doi:10.2475/ajs.290.2.164.
- C. Monnin, Chem. Geol., 153, 187 (1999); doi:10.1016/S0009-2541(98)00171-5.
- M. Prieto, A. Fernández-González, U. Becker and A. Putnis, Aquat. Geochem., 6, 133 (2000); doi:10.1023/A:1009642619137.
- X. Zhang, Y. Zhu, H. Zeng, D. Wang, J. Liu, H. Liu, M. Qian and L. Xu, Environ. Chem., 8, 133 (2011); doi:10.1071/EN10102.
- M. Prieto, Rev. Mineral. Geochem., 70, 47 (2009); doi:10.2138/rmg.2009.70.2.
References
T.S.B. Narasaraju and D.E. Phebe, J. Mater. Sci., 31, 1 (1996); doi:10.1007/BF00355120.
M. Kucharski, W. Mroz, J. Kowalczyk, B. Szafirska and M. Gluzinska, Arch. Metall., 47, 119 (2002).
T. Itakura, R. Sasai and H. Itoh, J. Hazard. Mater., 146, 328 (2007); doi:10.1016/j.jhazmat.2006.12.025.
P.A. O’Day, Elements, 2, 77 (2006); doi:10.2113/gselements.2.2.77.
J.V. Bothe Jr. and P.W. Brown, J. Hazard. Mater., 69, 197 (1999); doi:10.1016/S0304-3894(99)00105-3.
T. Nishimura and R.G. Robins, Miner. Process. Extr. Metallur. Rev., 18, 283 (1998); doi:10.1080/08827509808914159.
Y. Zhu, Y. Chen, F. Long, J. Lan, N. He and M. Qian, Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 40, 2659 (2009); doi:10.1007/s11661-009-9974-2.
Y. Zhu, X. Zhang, Y. Chen, Q. Xie, J. Lan, M. Qian and N. He, Chem. Geol., 268, 89 (2009); doi:10.1016/j.chemgeo.2009.07.014.
Y. Zhu, X. Zhang, H. Zeng, H. Liu, N. He and M. Qian, Environ. Chem. Lett., 9, 339 (2011); doi:10.1007/s10311-010-0284-0.
US Environmental Protection Agency, Trace Elements in Water, Solids and Biosolids by Stabilized Temperature Graphite Furnace Atomic Absorption Spectrometry, US EPA Method 200.9, EPA-821-R-01-011, Washington DC, USA (2001).
D.L. Parkhurst and C.A.J. Appelo, Description of input and examples for PHREEQC version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Geological Survey Techniques and Methods, Book 6, Chap. A43 (1999).
M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz and J. Ross, Biomaterials, 23, 751 (2002); doi:10.1016/S0142-9612(01)00180-6.
C. Chaïrat, E.H. Oelkers, J. Schott and J.E. Lartigue, Geochim. Cosmochim. Acta, 71, 5888 (2007); doi:10.1016/j.gca.2007.09.026.
S.V. Dorozhkin, Prog. Cryst. Growth Charact. Mater., 44, 45 (2002); doi:10.1016/S0960-8974(02)00004-9.
A.R. Felmy, D. Rai and D.A. Moore, Geochim. Cosmochim. Acta, 57, 4345 (1993); doi:10.1016/0016-7037(93)90487-H.
W. Stumm and J.J. Morgan, Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, John Wiley & Sons Inc., New York (1996).
F.C.M. Driessens, Mineral Aspects of Dentistry, S. Karger AG, Basel (1982).
E. Valsami-Jones, K.W. Ragnarsdottir, A. Putnis, D. Bosbach, A.J. Kemp and G. Cressey, Chem. Geol., 151, 215 (1998); doi:10.1016/S0009-2541(98)00081-3.
T.D. Farr and K.L. Elmore, J. Phys. Chem., 66, 315 (1962); doi:10.1021/j100808a029.
D. Baron and C.D. Palmer, Geochim. Cosmochim. Acta, 66, 2841 (2002); doi:10.1016/S0016-7037(02)00880-3.
H. Gamsjäger, E. Königsberger and W. Preis, Aquat. Geochem., 6, 119 (2000); doi:10.1023/A:1009690502299.
P.D. Glynn, E.J. Reardon, L.N. Plummer and E. Busenberg, Geochim. Cosmochim. Acta, 54, 267 (1990); doi:10.1016/0016-7037(90)90317-E.
P.D. Glynn and E.J. Reardon, Am. J. Sci., 290, 164 (1990); doi:10.2475/ajs.290.2.164.
C. Monnin, Chem. Geol., 153, 187 (1999); doi:10.1016/S0009-2541(98)00171-5.
M. Prieto, A. Fernández-González, U. Becker and A. Putnis, Aquat. Geochem., 6, 133 (2000); doi:10.1023/A:1009642619137.
X. Zhang, Y. Zhu, H. Zeng, D. Wang, J. Liu, H. Liu, M. Qian and L. Xu, Environ. Chem., 8, 133 (2011); doi:10.1071/EN10102.
M. Prieto, Rev. Mineral. Geochem., 70, 47 (2009); doi:10.2138/rmg.2009.70.2.