Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A DFT Prediction Study of Dibutyl Dithiophosphate Isomers as Extractant for Rare Earth Elements
Corresponding Author(s) : A. Anggraeni
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
In this work, based on the DFT approach, the electronic structural properties of dibutyl dithiophosphate (DBDTP) and its isomers (sec-butyl dithiophosphate and tert-butyl dithiophosphate) as extracants for the separation of rare earth elements at the DFT level B3LYP/6 -31G(d) were predicted and also to ascertain the DBDTP ligand isomer’s conformation as well as their relative stability. Using the base function 6-31G*, the chemical reactivity was computed with the help of chemical hardness descriptors, electronic chemical potential and electrophilicity. It was found that sec.-BDTP has biggest energy gap, while tert.-BDTP exhibited the smallest energy gap. Thus, tert.-BDTP is the most chemically reactive and stable isomer, suggesting that the rare earth metal complexes with tert.-BDTP ligand is more stable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Balaram, Geosci. Front., 10, 1285 (2019); https://doi.org/10.1016/j.gsf.2018.12.005
- L. Talens-Peiró and G. Villalba-Méndez, JOM, 65, 1327 (2013); https://doi.org/10.1007/s11837-013-0719-8
- Y. Hu, J. Florek, D. Larivière, F.-G. Fontaine and F. Kleitz, Chem. Rec., 18, 1261 (2018); https://doi.org/10.1002/tcr.201800012
- I. Rahayu, A. Anggraeni, M.S.S. Ukun and H.H. Bahti, IOP Conf. Ser.: Mater. Sci. Eng., 196, 012040 (2016); https://doi.org/10.1088/1757-899X/196/1/012040
- U. Pratomo, A. Anggraeni, A. Muthalib, U.M.S. Soedjanaatmadja, Yuhelda; I. Pinarti, A.T. Hidayat and H.H. Bahti, Procedia Chem., 17, 207 (2015); https://doi.org/10.1016/j.proche.2015.12.129
- Y.S. Tan, C.I. Yeo, E.R.T. Tiekink and P.J. Heard, Inorganics, 9, 60 (2021); https://doi.org/10.3390/inorganics9080060
- Pradip and D.W. Fuerstenau, Mining, Metallur. Explor., 30, 1 (2013); https://doi.org/10.1007/BF03402335
- M. Curtui and M.-L. Soran, J. Planar Chromatogr. Modern TLC, 20, 153 (2007); https://doi.org/10.1556/jpc.20.2007.2.17
- T.J. Cardwell, P.J. Marriott and P.S. McDonough, J. Chromatogr. A, 193, 53 (1980); https://doi.org/10.1016/S0021-9673(00)81443-0
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01, Gaussian; Inc: Wallingford CT (2009).
- P. Geerlings and F. De Proft, Int. J. Mol. Sci., 3, 276 (2002); https://doi.org/10.3390/i3040276
- M. Saranya, S. Ayyappan, R. Nithya, R.K. Sangeetha and A. Gokila, Digest J. Nanomater. Biostruct., 13, 97 (2018).
- R. Dennington, T.A. Keith and J.M. Millam, GaussView Version 5.0.8; Semichem Inc: Shawnee Mission KS (2009).
- M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross and A. Rubio, Fundamentals of Time-Dependent Density Functional Theory; Springer-Verlag: Berlin, vol. 837 (2012)
References
V. Balaram, Geosci. Front., 10, 1285 (2019); https://doi.org/10.1016/j.gsf.2018.12.005
L. Talens-Peiró and G. Villalba-Méndez, JOM, 65, 1327 (2013); https://doi.org/10.1007/s11837-013-0719-8
Y. Hu, J. Florek, D. Larivière, F.-G. Fontaine and F. Kleitz, Chem. Rec., 18, 1261 (2018); https://doi.org/10.1002/tcr.201800012
I. Rahayu, A. Anggraeni, M.S.S. Ukun and H.H. Bahti, IOP Conf. Ser.: Mater. Sci. Eng., 196, 012040 (2016); https://doi.org/10.1088/1757-899X/196/1/012040
U. Pratomo, A. Anggraeni, A. Muthalib, U.M.S. Soedjanaatmadja, Yuhelda; I. Pinarti, A.T. Hidayat and H.H. Bahti, Procedia Chem., 17, 207 (2015); https://doi.org/10.1016/j.proche.2015.12.129
Y.S. Tan, C.I. Yeo, E.R.T. Tiekink and P.J. Heard, Inorganics, 9, 60 (2021); https://doi.org/10.3390/inorganics9080060
Pradip and D.W. Fuerstenau, Mining, Metallur. Explor., 30, 1 (2013); https://doi.org/10.1007/BF03402335
M. Curtui and M.-L. Soran, J. Planar Chromatogr. Modern TLC, 20, 153 (2007); https://doi.org/10.1556/jpc.20.2007.2.17
T.J. Cardwell, P.J. Marriott and P.S. McDonough, J. Chromatogr. A, 193, 53 (1980); https://doi.org/10.1016/S0021-9673(00)81443-0
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision B.01, Gaussian; Inc: Wallingford CT (2009).
P. Geerlings and F. De Proft, Int. J. Mol. Sci., 3, 276 (2002); https://doi.org/10.3390/i3040276
M. Saranya, S. Ayyappan, R. Nithya, R.K. Sangeetha and A. Gokila, Digest J. Nanomater. Biostruct., 13, 97 (2018).
R. Dennington, T.A. Keith and J.M. Millam, GaussView Version 5.0.8; Semichem Inc: Shawnee Mission KS (2009).
M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross and A. Rubio, Fundamentals of Time-Dependent Density Functional Theory; Springer-Verlag: Berlin, vol. 837 (2012)