Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Crystal Structure and Infrared Spectroscopy of trans-[Cr(NCS)2(Me2tn)2][Cr(NCS)4(Me2tn)] Moiety
Corresponding Author(s) : Jong-Ha Choi
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
A novel double complex, trans-[Cr(NCS)2(Me2tn)2][Cr(NCS)4(Me2tn)]·NaSCN·i-PrOH, (1) (Me2tn = 2,2-dimethyl-1,3-propanediamine, C5H14N2; i-PrOH = isopropyl alcohol), was prepared and its structure was determined by single-crystal X-ray diffraction at 95 K. The complex 1 crystallized in the space group P`1 of the triclinic system with two nuclear formula units in a cell of dimensions a = 13.220(3), b = 13.699(3), c = 15.087(3) Å and α = 116.193(3), β = 102.73(3) and γ = 104.48(3)°. X-ray structural analysis revealed two crystallo-graphically independent Cr(III) complex cations in the complex 1. The asymmetric unit contains two halves of trans-[Cr(NCS)2(Me2tn)2]+ cations (2 and 3), one cis-[Cr(NCS)4(Me2tn)]− anion (4), one NaSCN salt and one isopropyl alcohol molecule. In two independent complex cations, the chromium(III) ions are coordinated by four N atoms of two chelating Me2tn and two NCS groups in a distorted octahedral geometry while the chromium(III) ion in cis-[Cr(NCS)4(Me2tn)]– has a distorted octahedral coordination with two N atoms of one Me2tn and four NCS groups. The two six-membered rings in trans-[Cr(NCS)2(Me2tn)2]+ cations adopt both anti chair-chair conformations. The Cr–N(Me2tn) bond lengths range from 2.0624(18) to 2.0877(16) Å, while the Cr–N(NCS) bond lengths range from 2.0718(16) to 2.0428 (16) Å. The crystal lattice is stabilized by hydrogen bonding interactions among the NH groups of the Me2tn ligand, OH group of i-PrOH and the S atoms of the NCS groups. The infrared spectral properties are also described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.A. House, Inorg. Chem., 25, 1671 (1986); https://doi.org/10.1021/ic00230a029
- M.F. DaCruz and M. Zimmer, Inorg. Chem., 35, 2872 (1996); https://doi.org/10.1021/ic9512237
- (a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, John Wiley & Sons; New York, ed. 6 (2009); (b) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons; New York, ed. 6, (2009).
- J.-H. Choi and S.H. Lee, J. Mol. Struct., 932, 84 (2009); https://doi.org/10.1016/j.molstruc.2009.05.048
- J.-H. Choi, S.H. Lee and U. Lee, Acta Crystallogr. Sect E, 64, m1429 (2008); https://doi.org/10.1107/S1600536808032911
- D. Moon and J.-H. Choi, Acta Crystallogr. Sect C, 71, 351 (2015); https://doi.org/10.1107/S2053229615006026
- J.-H. Choi, T. Joshi and L. Spiccia, Z. Anorg. Allg. Chem., 637, 1194 (2011); https://doi.org/10.1002/zaac.201100029
- D. Moon and J.-H. Choi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 774 (2015); https://doi.org/10.1016/j.saa.2014.11.099
- D. Moon, C.S. Lee, K.S. Ryoo and J.-H. Choi, Bull. Korean Chem. Soc., 35, 3099 (2014); https://doi.org/10.5012/bkcs.2014.35.10.3099
- D. Moon, J.-H. Choi, Inorg. Chim. Acta, 519, 120259 (2021); https://doi.org/10.1016/j.ica.2021.120259
- J.-H. Choi, W. Clegg, G.S. Nichol, S.H. Lee, Y.C. Park and M.H. Habibi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 796 (2007); https://doi.org/10.1016/j.saa.2007.01.002
- D. Moon, C.S. Lee and J.-H. Choi, J. Chem. Crystallogr., 44, 306 (2014); https://doi.org/10.1007/s10870-014-0515-5
- J.-H. Choi, T. Suzuki and S. Kaizaki, Acta Crystallogr. Sect C, 58, m539 (2002); https://doi.org/10.1107/s0108270102018231
- D. Moon and J.-H. Choi, J. Mol. Struct., 1177, 338 (2019); https://doi.org/10.1016/j.molstruc.2018.09.049
- D. Moon, M.A. Subhan and J.-H. Choi, Int. J. Chem. Sci., 14, 1829 (2016).
- J.W. Shin, K. Eom and D. Moon, J. Synchrotron Radiat., 23, 369 (2016); https://doi.org/10.1107/S1600577515021633
- Z. Otwinowski and W. Minor, eds., C.W. Carter Jr. and R.M. Sweet, Methods in Enzymology, Academic Press: New York, Macromolecular Crystallography, Part A, vol. 276, pp. 307-326 (1997).
- G.M. Sheldrick, Acta Crystallogr. Sect A, 71, 3 (2015); https://doi.org/10.1107/S2053273314026370
- G.M. Sheldrick, Acta Crystallogr. Sect C, 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
- K. Brandenburg and H. Putz, DIAMOND-3, University of Bonn, Germany (2014).
- J.-H. Choi, Inorg. Chim. Acta, 362, 4231 (2009); https://doi.org/10.1016/j.ica.2009.05.024
- J.-H. Choi, I.G. Oh, T. Suzuki and S. Kaizaki, J. Mol. Struct., 694, 39 (2004); https://doi.org/10.1016/j.molstruc.2004.01.034
- D. Moon, J.-H. Choi, K.S. Ryoo and Y.P. Hong, Acta Crystallogr. Sect E, 69, m376 (2013); https://doi.org/10.1107/S1600536813015456
- D. Moon, S. Tanaka, T. Akitsu and J.-H. Choi, Acta Crystallogr. Sect E, 73, 72 (2017); https://doi.org/10.1107/S2056989016020120
- D. Moon and J.-H. Choi, J. Coord. Chem., 74, (2021) in press; https://doi.org/10.1080/00958972.2020.1863381
References
D.A. House, Inorg. Chem., 25, 1671 (1986); https://doi.org/10.1021/ic00230a029
M.F. DaCruz and M. Zimmer, Inorg. Chem., 35, 2872 (1996); https://doi.org/10.1021/ic9512237
(a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, John Wiley & Sons; New York, ed. 6 (2009); (b) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons; New York, ed. 6, (2009).
J.-H. Choi and S.H. Lee, J. Mol. Struct., 932, 84 (2009); https://doi.org/10.1016/j.molstruc.2009.05.048
J.-H. Choi, S.H. Lee and U. Lee, Acta Crystallogr. Sect E, 64, m1429 (2008); https://doi.org/10.1107/S1600536808032911
D. Moon and J.-H. Choi, Acta Crystallogr. Sect C, 71, 351 (2015); https://doi.org/10.1107/S2053229615006026
J.-H. Choi, T. Joshi and L. Spiccia, Z. Anorg. Allg. Chem., 637, 1194 (2011); https://doi.org/10.1002/zaac.201100029
D. Moon and J.-H. Choi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 774 (2015); https://doi.org/10.1016/j.saa.2014.11.099
D. Moon, C.S. Lee, K.S. Ryoo and J.-H. Choi, Bull. Korean Chem. Soc., 35, 3099 (2014); https://doi.org/10.5012/bkcs.2014.35.10.3099
D. Moon, J.-H. Choi, Inorg. Chim. Acta, 519, 120259 (2021); https://doi.org/10.1016/j.ica.2021.120259
J.-H. Choi, W. Clegg, G.S. Nichol, S.H. Lee, Y.C. Park and M.H. Habibi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 796 (2007); https://doi.org/10.1016/j.saa.2007.01.002
D. Moon, C.S. Lee and J.-H. Choi, J. Chem. Crystallogr., 44, 306 (2014); https://doi.org/10.1007/s10870-014-0515-5
J.-H. Choi, T. Suzuki and S. Kaizaki, Acta Crystallogr. Sect C, 58, m539 (2002); https://doi.org/10.1107/s0108270102018231
D. Moon and J.-H. Choi, J. Mol. Struct., 1177, 338 (2019); https://doi.org/10.1016/j.molstruc.2018.09.049
D. Moon, M.A. Subhan and J.-H. Choi, Int. J. Chem. Sci., 14, 1829 (2016).
J.W. Shin, K. Eom and D. Moon, J. Synchrotron Radiat., 23, 369 (2016); https://doi.org/10.1107/S1600577515021633
Z. Otwinowski and W. Minor, eds., C.W. Carter Jr. and R.M. Sweet, Methods in Enzymology, Academic Press: New York, Macromolecular Crystallography, Part A, vol. 276, pp. 307-326 (1997).
G.M. Sheldrick, Acta Crystallogr. Sect A, 71, 3 (2015); https://doi.org/10.1107/S2053273314026370
G.M. Sheldrick, Acta Crystallogr. Sect C, 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
K. Brandenburg and H. Putz, DIAMOND-3, University of Bonn, Germany (2014).
J.-H. Choi, Inorg. Chim. Acta, 362, 4231 (2009); https://doi.org/10.1016/j.ica.2009.05.024
J.-H. Choi, I.G. Oh, T. Suzuki and S. Kaizaki, J. Mol. Struct., 694, 39 (2004); https://doi.org/10.1016/j.molstruc.2004.01.034
D. Moon, J.-H. Choi, K.S. Ryoo and Y.P. Hong, Acta Crystallogr. Sect E, 69, m376 (2013); https://doi.org/10.1107/S1600536813015456
D. Moon, S. Tanaka, T. Akitsu and J.-H. Choi, Acta Crystallogr. Sect E, 73, 72 (2017); https://doi.org/10.1107/S2056989016020120
D. Moon and J.-H. Choi, J. Coord. Chem., 74, (2021) in press; https://doi.org/10.1080/00958972.2020.1863381