Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation and Comparative Study of Acoustic Non-Linearity Parameter of Liquid Metals and Alloys using Sound Speed and Density Data
Corresponding Author(s) : Subhash Chandra Shrivastava
Asian Journal of Chemistry,
Vol. 33 No. 3 (2021): Vol 33 Issue 3
Abstract
The non-linearity acoustic parameter (B/A) has been computed for six pure liquid metal alloys (Na, K, Rb, Cs, Pb and Sn), four liquid metal alloys (K-Rb, Na-Cs, Pb-Sn and Na-K) and other several liquid metals at different temperatures. This parameter has been calculated by using three different approaches viz. Hartmann method, Ballou rule and Johnson et al. method. The input data required density, sound speed and thermal expansivity were taken from literature. A comparative study has been carried out and quite satisfactory results are obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Xia, J. Acoust. Soc. Am., 146, 1394 (2019); https://doi.org/10.1121/1.5123486
- X. Gong, D. Zhang, J. Liu, H. Wang, Y. Yan and X. Xu, J. Acoust. Soc. Am., 116, 1819 (2004); https://doi.org/10.1121/1.1781709
- D.M. Latha, P. Pardhasaradhi, P.V. Datta Prasad, D.V. Rao and V.G.K.M. Pisipati, Res. Rev.: J. Pure Appl. Phys., 2, 8 (2014).
- L. Bjørnø, Ultrasonics, 40, 11 (2002); https://doi.org/10.1016/S0041-624X(02)00084-7
- L. Di Marcoberardino, J. Marchal and P. Cervenka, Appl. Acoust., 73, 900 (2012); https://doi.org/10.1016/j.apacoust.2012.03.011
- E. Königsberger, Int. J. Mater. Res., 99, 197 (2008); https://doi.org/10.3139/146.101624
- E. Königsberger, G. Eriksson, P.M. May and G. Hefter, Ind. Eng. Chem. Res., 44, 5805 (2005); https://doi.org/10.1021/ie050024k
- P. Kielczynski, M. Szalewski, A. Balcerzak, K. Wieja, A.J. Rostocki and R.M. Siegoczynski, IEEE Trans Ultrason. Ferroelectr. Freq. Contr., 62, 1122 (2015); https://doi.org/10.1109/TUFFC.2015.007053
- R.P. Jain, J.D. Pandey and K.P. Thakur, Z. Physik. Chem., 94, 211 (1975); https://doi.org/10.1524/zpch.1975.94.4-6.211
- B. Hartmann, G.F. Lee and E. Balizer, J. Acoust. Soc. Am., 108, 65 (2000); https://doi.org/10.1121/1.429444
- B. Hartmann and E. Balizer, J. Acoust. Soc. Am., 82, 614 (1987); https://doi.org/10.1121/1.395409
- J.D. Pandey and R.L. Mishra, Z. Physik. Chem., 260, 72 (1979).
- J.D. Pandey and H.C. Pandey, Acustica, 35, 283 (1976).
- H. Li, X. Zhang, Y. Sun and M. Li, AIP Adv., 7, 095322 (2017); https://doi.org/10.1063/1.4996926
- R.T. Beyer, Nonlinear Acoustics, U.S. Government Printing Office, Washington, DC, pp 98-102 (1974).
- J. Tong and Y. Dong, Kexue Tangbao, 33, 1511 (1988).
- J. Johnson, M. Kalidoss and R. Srinivasamoorthy, J. Pure Appl. Ultrason., 25, 136 (2003).
- B.K. Sharma, J. Acoust. Soc. Am., 73, 106 (1983); https://doi.org/10.1121/1.388842
- J.D. Pandey, B.D. Bhatt and R. Dey, PhysChemComm., 5, 37 (2002); https://doi.org/10.1039/B109599D
- R. Dey and P. Kumar, Acustica, 96, 8 (2011).
- J.D. Pandey, J. Chhabra, R. Dey, V. Sanguri and R. Verma, PramanaJ. Phys., 55, 433 (2000).
- J.D. Pandey, R. Dey and M. Upadhyaya, Acoustics Lett., 21, 120 (1997).
- R. Dey, A.K. Singh, N.K. Soni, B.S. Bisht and J.D. Pandey, PramanaJ. Phys., 67, 389 (2006).
- B. Hartmann, J. Acoust. Soc. Am., 65, 1392 (1979).
- J.E. Amaral and S.V. Letcher, J. Chem. Phys., 61, 92 (1974); https://doi.org/10.1063/1.1681675
- S. Blairs and M.H. Abbasi, Acta Acust. Acust., 79, 64 (1993).
References
L. Xia, J. Acoust. Soc. Am., 146, 1394 (2019); https://doi.org/10.1121/1.5123486
X. Gong, D. Zhang, J. Liu, H. Wang, Y. Yan and X. Xu, J. Acoust. Soc. Am., 116, 1819 (2004); https://doi.org/10.1121/1.1781709
D.M. Latha, P. Pardhasaradhi, P.V. Datta Prasad, D.V. Rao and V.G.K.M. Pisipati, Res. Rev.: J. Pure Appl. Phys., 2, 8 (2014).
L. Bjørnø, Ultrasonics, 40, 11 (2002); https://doi.org/10.1016/S0041-624X(02)00084-7
L. Di Marcoberardino, J. Marchal and P. Cervenka, Appl. Acoust., 73, 900 (2012); https://doi.org/10.1016/j.apacoust.2012.03.011
E. Königsberger, Int. J. Mater. Res., 99, 197 (2008); https://doi.org/10.3139/146.101624
E. Königsberger, G. Eriksson, P.M. May and G. Hefter, Ind. Eng. Chem. Res., 44, 5805 (2005); https://doi.org/10.1021/ie050024k
P. Kielczynski, M. Szalewski, A. Balcerzak, K. Wieja, A.J. Rostocki and R.M. Siegoczynski, IEEE Trans Ultrason. Ferroelectr. Freq. Contr., 62, 1122 (2015); https://doi.org/10.1109/TUFFC.2015.007053
R.P. Jain, J.D. Pandey and K.P. Thakur, Z. Physik. Chem., 94, 211 (1975); https://doi.org/10.1524/zpch.1975.94.4-6.211
B. Hartmann, G.F. Lee and E. Balizer, J. Acoust. Soc. Am., 108, 65 (2000); https://doi.org/10.1121/1.429444
B. Hartmann and E. Balizer, J. Acoust. Soc. Am., 82, 614 (1987); https://doi.org/10.1121/1.395409
J.D. Pandey and R.L. Mishra, Z. Physik. Chem., 260, 72 (1979).
J.D. Pandey and H.C. Pandey, Acustica, 35, 283 (1976).
H. Li, X. Zhang, Y. Sun and M. Li, AIP Adv., 7, 095322 (2017); https://doi.org/10.1063/1.4996926
R.T. Beyer, Nonlinear Acoustics, U.S. Government Printing Office, Washington, DC, pp 98-102 (1974).
J. Tong and Y. Dong, Kexue Tangbao, 33, 1511 (1988).
J. Johnson, M. Kalidoss and R. Srinivasamoorthy, J. Pure Appl. Ultrason., 25, 136 (2003).
B.K. Sharma, J. Acoust. Soc. Am., 73, 106 (1983); https://doi.org/10.1121/1.388842
J.D. Pandey, B.D. Bhatt and R. Dey, PhysChemComm., 5, 37 (2002); https://doi.org/10.1039/B109599D
R. Dey and P. Kumar, Acustica, 96, 8 (2011).
J.D. Pandey, J. Chhabra, R. Dey, V. Sanguri and R. Verma, PramanaJ. Phys., 55, 433 (2000).
J.D. Pandey, R. Dey and M. Upadhyaya, Acoustics Lett., 21, 120 (1997).
R. Dey, A.K. Singh, N.K. Soni, B.S. Bisht and J.D. Pandey, PramanaJ. Phys., 67, 389 (2006).
B. Hartmann, J. Acoust. Soc. Am., 65, 1392 (1979).
J.E. Amaral and S.V. Letcher, J. Chem. Phys., 61, 92 (1974); https://doi.org/10.1063/1.1681675
S. Blairs and M.H. Abbasi, Acta Acust. Acust., 79, 64 (1993).