Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Polyaniline/Graphene Oxide Thin Films Microelectrodes through Electrochemical Reduction at Different Potential Range for High-Performance Supercapacitors
Corresponding Author(s) : Ashis K. Sarker
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
In this article, the fabrication and performance of supercapacitors prepared through electrochemical reduction applied at different voltage range from polyaniline/graphene oxide (PANi/GO) thin films, which are renewable materials with an excellent yield of energy conversion is reported. The PANi/GO thin film was reduced electrochemically with different potential windows, scan rate and number of cycles which was acquired using layer-by-layer (LBL) assembly method. The resultant electrodes displayed various specific capacitances after pre-reduction with different conditions.The influence of the electrochemical reduction was investigated by Raman spectroscopy and X-ray photoelectron spectroscopy for capacitance performance. The optimum conditions were explored for supercapacitor application and an elevated specific capacitance 2619 F cm-3 (areal capacitance 18.38 mF cm-2) at 1 mV s-1 obtaining the film reduced with applied potential of -0.87 to -0.5 V. This study could introduce the new possibilities for the improvement of the electrochemical reduction effects to the composite materials for high-performance supercapacitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang, Nanoscale, 2, 2164 (2010); https://doi.org/10.1039/c0nr00224k
- X. Rui, H. Tan and Q. Yan, Nanoscale, 6, 9889 (2014); https://doi.org/10.1039/C4NR03057E
- K.D. Fong, T. Wang and S.K. Smoukov, Sustainable Energy Fuels, 1, 1857 (2017); https://doi.org/10.1039/C7SE00339K
- S.A. Ansari, N.A. Khan, Z. Hasan, A.A. Shaikh, F.K. Ferdousi, H.R. Barai, N.S. Lopa and M.M. Rahman, Sustainable Energy Fuels, 4, 2480 (2020); https://doi.org/10.1039/D0SE00049C
- Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin and J.M. Tour, ACS Nano, 9, 5868 (2015); https://doi.org/10.1021/acsnano.5b00436
- C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan, A. SeralAscaso, S. Barwich, C.Ó. Coileáin, N. McEvoy, H.C. Nerl, B. Anasori, J.N. Coleman, Y. Gogotsi and V. Nicolosi, Nat. Commun., 10, 1795 (2019); https://doi.org/10.1038/s41467-019-09398-1
- J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen and Z.F. Ren, Carbon, 40, 1193 (2002); https://doi.org/10.1016/S0008-6223(01)00266-4
- C. Li, D. Wang, T. Liang, X. Wang and L. Ji, Mater. Lett., 58, 3774 (2004); https://doi.org/10.1016/j.matlet.2004.07.027
- C. Peng, S. Zhang, D. Jewell and G.Z. Chen, Prog. Nat. Sci., 18, 777 (2008); https://doi.org/10.1016/j.pnsc.2008.03.002
- X.Y. Peng, X.X. Liu, D. Diamond and K.T. Lau, Carbon, 49, 3488 (2011); https://doi.org/10.1016/j.carbon.2011.04.047
- W. Lu, J.B. Baek and L. Dai, Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications, John Wiley & Sons Inc., United States of America, p. 323 (2015).
- A.K. Sarker and J.D. Hong, Langmuir, 28, 12637 (2012); https://doi.org/10.1021/la3021589
- G. Decher and J.D. Hong, Makromol. Chem. Macromol. Symp., 46, 321 (1991); https://doi.org/10.1002/masy.19910460145
- G. Decher and J.D. Hong, Ber. Bunsenges. Phys. Chem, 95, 1430 (1991); https://doi.org/10.1002/bbpc.19910951122
- G. Decher, J.D. Hong and J. Schmitt, Thin Solid Films, 210-211, 831 (1992); https://doi.org/10.1016/0040-6090(92)90417-A
- A.K. Sarker and J.D. Hong, Colloids Surf. A Physicochem. Eng. Asp., 436, 967 (2013); https://doi.org/10.1016/j.colsurfa.2013.08.043
- A.K. Sarker and J.D. Hong, Bull. Korean Chem. Soc., 35, 1799 (2014); https://doi.org/10.5012/bkcs.2014.35.6.1799
- H. Guo, X. Wang, Q. Qian, F. Wang and X.A. Xia, ACS Nano, 3, 2653 (2009); https://doi.org/10.1021/nn900227d
- H. Yu, J. He, L. Sun, S. Tanaka and B. Fugetsu, Carbon, 51, 94 (2013); https://doi.org/10.1016/j.carbon.2012.08.016
- F. Tuinstra and J.L. Koenig, J. Chem. Phys., 53, 1126 (1970); https://doi.org/10.1063/1.1674108
- A. Kaniyoor and S. Ramaprabhu, AIP Adv., 2, 032183 (2012); https://doi.org/10.1063/1.4756995
- A.C. Ferrari, Solid State Commun., 143, 47 (2007); https://doi.org/10.1016/j.ssc.2007.03.052
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Phys. Rev. Lett., 97, 187401 (2006); https://doi.org/10.1103/PhysRevLett.97.187401
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
- A. Das, B. Chakraborty and A.K. Sood, Bull. Mater. Sci., 31, 579 (2008); https://doi.org/10.1007/s12034-008-0090-5
- L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, N.L. Speziali, A. Jorio and M.A. Pimenta, Carbon, 46, 272 (2008); https://doi.org/10.1016/j.carbon.2007.11.015
- D.X. Yang, A. Velamakanni, G. Bozoklu, S.J. Park, M. Stoller, R.D. Piner, S. Stankovich, I.H. Jung, D.A. Field, C.A. Ventrice Jr. and R.S. Ruoff, Carbon, 47, 145 (2009); https://doi.org/10.1016/j.carbon.2008.09.045
- C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel and M. Chhowalla, Adv. Funct. Mater., 19, 2577 (2009); https://doi.org/10.1002/adfm.200900166
- B. Palys, Handbook of Graphene, In: Biosensors and Advanced Sensors. Wiley-Scrivener, vol. 6, p. 613 (2019).
- M.A. Raj and S.A. John, J. Phys. Chem. C, 117, 4326 (2013); https://doi.org/10.1021/jp400066z
- H.R. Barai, A.N. Banerjee, N. Hamnabard and S.W. Joo, RSC Adv., 6, 78887 (2016); https://doi.org/10.1039/C6RA18811G
- X. Su, X. Yang, L. Yu, G. Cheng, H. Zhang, T. Lin and F.-H. Zhao, CrystEngComm, 17, 5970 (2015); https://doi.org/10.1039/C5CE00707K
- C. Wan, L. Yuan and H. Shen, Int. J. Electrochem. Sci., 9, 4024 (2014).
- S. Devaraj and N. Munichandraiah, J. Electrochem. Soc., 154, 80 (2007); https://doi.org/10.1149/1.2404775
- H. Chen, X. Dong, J. Shi, J. Zhao, Z. Hua, J. Gao, M. Ruan and D. Yan, J. Mater. Chem., 17, 855 (2007); https://doi.org/10.1039/b615972a
- T. Nathan, M. Cloke and S.R.S. Prabaharan, J. Nanomater., 2008, 948183 (2009); https://doi.org/10.1155/2008/948183
- H.R. Barai, M.M. Rahman, M. Roy, P. Barai and S.W. Joo, Mater. Sci. Semicond. Process., 90, 245 (2019); https://doi.org/10.1016/j.mssp.2018.10.031
- H.R. Barai, N.S. Lopa, P. Barai, M.M. Rahman, A.K. Sarker and S.W. Joo, J. Mater. Sci. Mater. Electron., 30, 21269 (2019); https://doi.org/10.1007/s10854-019-02500-9
References
H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang, Nanoscale, 2, 2164 (2010); https://doi.org/10.1039/c0nr00224k
X. Rui, H. Tan and Q. Yan, Nanoscale, 6, 9889 (2014); https://doi.org/10.1039/C4NR03057E
K.D. Fong, T. Wang and S.K. Smoukov, Sustainable Energy Fuels, 1, 1857 (2017); https://doi.org/10.1039/C7SE00339K
S.A. Ansari, N.A. Khan, Z. Hasan, A.A. Shaikh, F.K. Ferdousi, H.R. Barai, N.S. Lopa and M.M. Rahman, Sustainable Energy Fuels, 4, 2480 (2020); https://doi.org/10.1039/D0SE00049C
Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin and J.M. Tour, ACS Nano, 9, 5868 (2015); https://doi.org/10.1021/acsnano.5b00436
C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan, A. SeralAscaso, S. Barwich, C.Ó. Coileáin, N. McEvoy, H.C. Nerl, B. Anasori, J.N. Coleman, Y. Gogotsi and V. Nicolosi, Nat. Commun., 10, 1795 (2019); https://doi.org/10.1038/s41467-019-09398-1
J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen and Z.F. Ren, Carbon, 40, 1193 (2002); https://doi.org/10.1016/S0008-6223(01)00266-4
C. Li, D. Wang, T. Liang, X. Wang and L. Ji, Mater. Lett., 58, 3774 (2004); https://doi.org/10.1016/j.matlet.2004.07.027
C. Peng, S. Zhang, D. Jewell and G.Z. Chen, Prog. Nat. Sci., 18, 777 (2008); https://doi.org/10.1016/j.pnsc.2008.03.002
X.Y. Peng, X.X. Liu, D. Diamond and K.T. Lau, Carbon, 49, 3488 (2011); https://doi.org/10.1016/j.carbon.2011.04.047
W. Lu, J.B. Baek and L. Dai, Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications, John Wiley & Sons Inc., United States of America, p. 323 (2015).
A.K. Sarker and J.D. Hong, Langmuir, 28, 12637 (2012); https://doi.org/10.1021/la3021589
G. Decher and J.D. Hong, Makromol. Chem. Macromol. Symp., 46, 321 (1991); https://doi.org/10.1002/masy.19910460145
G. Decher and J.D. Hong, Ber. Bunsenges. Phys. Chem, 95, 1430 (1991); https://doi.org/10.1002/bbpc.19910951122
G. Decher, J.D. Hong and J. Schmitt, Thin Solid Films, 210-211, 831 (1992); https://doi.org/10.1016/0040-6090(92)90417-A
A.K. Sarker and J.D. Hong, Colloids Surf. A Physicochem. Eng. Asp., 436, 967 (2013); https://doi.org/10.1016/j.colsurfa.2013.08.043
A.K. Sarker and J.D. Hong, Bull. Korean Chem. Soc., 35, 1799 (2014); https://doi.org/10.5012/bkcs.2014.35.6.1799
H. Guo, X. Wang, Q. Qian, F. Wang and X.A. Xia, ACS Nano, 3, 2653 (2009); https://doi.org/10.1021/nn900227d
H. Yu, J. He, L. Sun, S. Tanaka and B. Fugetsu, Carbon, 51, 94 (2013); https://doi.org/10.1016/j.carbon.2012.08.016
F. Tuinstra and J.L. Koenig, J. Chem. Phys., 53, 1126 (1970); https://doi.org/10.1063/1.1674108
A. Kaniyoor and S. Ramaprabhu, AIP Adv., 2, 032183 (2012); https://doi.org/10.1063/1.4756995
A.C. Ferrari, Solid State Commun., 143, 47 (2007); https://doi.org/10.1016/j.ssc.2007.03.052
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Phys. Rev. Lett., 97, 187401 (2006); https://doi.org/10.1103/PhysRevLett.97.187401
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
A. Das, B. Chakraborty and A.K. Sood, Bull. Mater. Sci., 31, 579 (2008); https://doi.org/10.1007/s12034-008-0090-5
L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, N.L. Speziali, A. Jorio and M.A. Pimenta, Carbon, 46, 272 (2008); https://doi.org/10.1016/j.carbon.2007.11.015
D.X. Yang, A. Velamakanni, G. Bozoklu, S.J. Park, M. Stoller, R.D. Piner, S. Stankovich, I.H. Jung, D.A. Field, C.A. Ventrice Jr. and R.S. Ruoff, Carbon, 47, 145 (2009); https://doi.org/10.1016/j.carbon.2008.09.045
C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel and M. Chhowalla, Adv. Funct. Mater., 19, 2577 (2009); https://doi.org/10.1002/adfm.200900166
B. Palys, Handbook of Graphene, In: Biosensors and Advanced Sensors. Wiley-Scrivener, vol. 6, p. 613 (2019).
M.A. Raj and S.A. John, J. Phys. Chem. C, 117, 4326 (2013); https://doi.org/10.1021/jp400066z
H.R. Barai, A.N. Banerjee, N. Hamnabard and S.W. Joo, RSC Adv., 6, 78887 (2016); https://doi.org/10.1039/C6RA18811G
X. Su, X. Yang, L. Yu, G. Cheng, H. Zhang, T. Lin and F.-H. Zhao, CrystEngComm, 17, 5970 (2015); https://doi.org/10.1039/C5CE00707K
C. Wan, L. Yuan and H. Shen, Int. J. Electrochem. Sci., 9, 4024 (2014).
S. Devaraj and N. Munichandraiah, J. Electrochem. Soc., 154, 80 (2007); https://doi.org/10.1149/1.2404775
H. Chen, X. Dong, J. Shi, J. Zhao, Z. Hua, J. Gao, M. Ruan and D. Yan, J. Mater. Chem., 17, 855 (2007); https://doi.org/10.1039/b615972a
T. Nathan, M. Cloke and S.R.S. Prabaharan, J. Nanomater., 2008, 948183 (2009); https://doi.org/10.1155/2008/948183
H.R. Barai, M.M. Rahman, M. Roy, P. Barai and S.W. Joo, Mater. Sci. Semicond. Process., 90, 245 (2019); https://doi.org/10.1016/j.mssp.2018.10.031
H.R. Barai, N.S. Lopa, P. Barai, M.M. Rahman, A.K. Sarker and S.W. Joo, J. Mater. Sci. Mater. Electron., 30, 21269 (2019); https://doi.org/10.1007/s10854-019-02500-9